RESEARCHES REGARDING WINTER WHEAT FERTILIZATION IN THE **REGION OF SALTED SOILS**

CERCETĂRI PRIVIND FERTILIZAREA GRÂULUI DE TOAMNĂ ÎN ZONA **SOLURILOR SALINIZATE**

D.C. MICU, I. BORCEAN

Banat's University of Agricultural Sciences and Veterinary Medicine, Timişoara

Rezumat: Cercetările s-au efectuat în zona de vest Abstract: The researches have been done in the a României, pe un sol de tip cernoziom salsodic, salinizat slab și au vizat stabilirea eficacitătii dozelor și a tipului de îngrășământ cu azot, aplicat pe fond constant de P₈₀. Rezultatele evidențiază posibilitatea creșterii recoltei de la 2400 kg/ha la peste 5000 kg/ha prin fertilizare cu N₂₀₀, aplicat sub formă de sulfat de aluminiu. Ambele tipuri de îngrășăminte cu azot, în domeniul cercetat, au influențat favorabil însușirile ponderale ale semințelor (MMB și MH) cât și conținutul de proteină și gluten umed.

western part of Romania, on a salsodic chernozem soil, poorly salted, and had as goal to establish the doses' efficiency and the type of nitrogen fertilizer used on a constant base of P_{80} . The results show the possibility of yield increase from 2400 kg/ha to over 5000 kg/ha, by fertilizing with N_{200} , used as aluminum sulfate. Both types of nitrogen fertilizers have positively influenced the ponderal characteristics of the grains and of (MMB and MH) as well as the protein and wet gluten content.

Key words: winter wheat, fertilization Cuvinte cheie: grâu de toamnă, fertilizare

INTRODUCTION

The fertilization with nitrogen fertilizers on a base of phosphorous and potassium leads to important increase of crops and to the bettering of the winter wheat quality on all types of soil. The researches done had as aim to establish the doses and the type of nitrogen fertilizer and its influence on the yield, on the ponderal characteristics of the grains, and on the protein and wet gluten content under the conditions of the slated soils in the region Sânmartin -Buzias.

MATERIALS AND METHODS

The variety used for the experiments was Alex, a variety very often cultivated in the mentioned area. The experiments were bifactorial, the A factor being the type of nitrogen fertilizer (ammonium nitrate and ammonium sulfate), and the B factor the doses of nitrogen used on a base of N_{80} , N_{100} , N_{150} , N_{200} . The precursory cultivated plant was the maize cultivated for its grains. The technology applied for this crop was the usual one, but there must be mentioned that at seeding there has been used a density of 500 kg/m².

RESULTS AND DISCUSSIONS

In Table 1 the results obtained are given, which varied for the researched area between 2400 kg/ha and 5200 kg/ha. The use of ammonium sulfate has increased the yield with 5% as compared to the use of ammonium nitrate. This happened both due to the strong acid reaction of the ammonium sulfate and to the supply of sulphur to the salted soil on which there has been worked. The nitrogen fertilizers increased the yield with over 800 kg/ha for a doses of N₅₀, and with over 1700 kg/ha for a doses of N_{100} , with over 2300 kg/ha when fertilizing with N_{150} and

with over 2500 kg/ha when fertilizing with N_{200} . In Table 2 are given the balanced characteristics MMB and MH favorably influenced by the doses of fertilizer.

The yield results obtained for the winter wheat

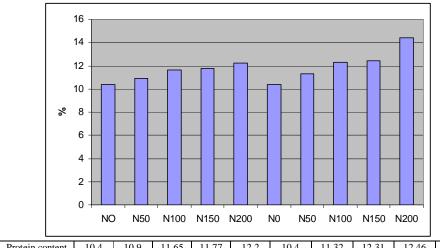
Table 1

The A factor The type of nitrogen fertilizer	The B fa	doses of	N on a ba	The averages of the A factor					
	N_0	N ₅₀	N ₁₀₀	N ₁₅₀	N ₂₀₀	Yield Kg/ha	%	Difference Kg/ha	Signification
Ammonium nitrogen	2430	3265	4096	4625	4800	3843	100		
Ammonium sulfate	2430	3361	4201	4932	5212	4027	105	184	XXX

DL 5% = 95 kg/ha DL 1% = 127 kg/ha DL 0.1% = 168 kg/ha

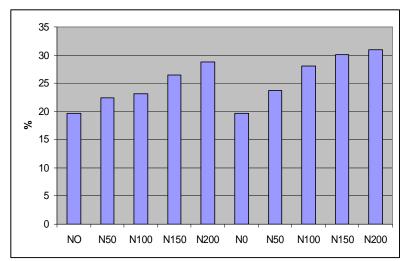
Specification	N_0	N ₅₀	N ₁₀₀	N ₁₅₀	N ₂₀₀
Yield kg/ha	2430	3313	4148	4148 4778	
%	100	136	171	197	206
Difference kg/ha		883	1718	2348	2576
Signification		XXX	XXX	XXX	XXX

DL 5% = 214 kg/ha DL 1% = 286 kg/ha DL 0.1% = 375kg/ha


Table 2

The ponderal characteristics (MMB and MH)

	The ponderal characteristics (whith and with)										
Ponderal	Type of fertilizer		Doses of N								
characteristic		N_0	N ₅₀	N ₁₀₀	N ₁₅₀	N ₂₀₀					
MMB	NO ₃ NH ₄	39.0	41.2	43.5	44.4	44.8					
	(NH ₄) ₂ SO ₄	39.0	42.3	44.1	46.4	47.3					
МН	NO ₃ NH ₄	78.6	79.8	80.6	80.8	81.1					
	(NH ₄) ₂ SO ₄	78.6	80.7	80.9	80.9	81.3					


Therefore, MMB increased from 39.0 g to 44.8g in the variant fertilized with N_{200} used in form of ammonium sulfate. The hectolitre mass increased together with the N doses from 78.6 kg/hl to over 81kg/hl in the variant N_{200} . The protein content is given in fig. 1, and the gluten content in fig. 2.

It results that in the researched area the protein content increased from 10.4% (N_0) to 12.2% (N_{200}) in the variants fertilized with ammonium nitrate and from 10.44% (N_0) to 14.43% $N(_{200})$ in the variants fertilized with ammonium sulfate. This tendency has been also shown in the case of the wet gluten content, which increased from 19.65% (N_0) to 28.75% (N_{200}) in the variant fertilized with ammonium nitrate and to 30.93% (N_{200}) when using ammonium sulfate.

Protein content	10.4	10.9	11.65	11.77	12.2	10.4	11.32	12.31	12.46	14.43	
Difference (%)		0.50	1.25	1.37	1.80		0.92	1.91	2.06	4.03	
X		11.36					12.18				
Difference (%)							0.82				
Specification	Ammonium nitrate					Ammonium sulfate					

Fig. 1. The raw protein content (%) according to the type of nitrogen fertilizer and to the used doses

Protein content	10.4	10.9	11.65	11.77	12.2	10.4	11.32	12.31	12.46	14.43	
Difference (%)		0.50	1.25	1.37	1.80		0.92	1.91	2.06	4.03	
X		11.36					12.18				
Difference (%)							0.82				
Specification		Ammonium nitrate				Ammonium sulfate					

Fig. 1. The wet gluten content (%) according to the type of nitrogen fertilizer and to the used doses

CONCLUSIONS

In the case of the salsodic chernozem poorly salted, the use of nitrogen fertilizers in form of ammonium sulfate ensures the increase of yield with 50% as compared to use of the same doses of fertilizer, but in form of ammonium nitrate.

The protein and wet gluten content in the studied area were positively influenced by using nitrogen fertilizers, the most important increases being noticed for the variants of fertilization with ammonium sulfate.

LITERATURE

- 1. BORCEAN I., BORCEAN A., 2004 Cultura și protecția integrată a cerealelor, leguminoaselor și a plantelor tehnice, Ed. De vest Timișoara.
- 2. Ceapoiu N., Bîlteanu Gh., Hera Cr., Săulescu N., Floare Negulescu, Bărbulescu Al., 1994, Grâul , Ed. Academiei, București.
- 3. DAVIDESCU D., DAVIDESCU VELICIA, 1975 Agrochimie modernă, Ed. Academiei, București.
- 4. HERA CR., BORLAN Z., 1980 Ghid pentru alcătuirea planurilor de fertilizare, Ed. Ceres, București.
- 5. Muntean L. S., Borcean I., Roman Gh., Axinte M., 2003 Fitotehnie. Ed. Ion Ionescu de la Brad, Iași.