STUDY CONCERNING THE EVOLUTION OF MICROBIAL COMMUNITY ON SOYBEAN, SPRING BARLEY AND CORN CROPS IN TRANSYLVANIA PLAIN

Alina Ioana CIURE, Roxana VIDICAN, V. STOIAN, Susana SFECHIȘ, Anamaria MĂLINAȘ

University for Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture ciurealinaioana@yahoo.com

ctur cumutounu @yunoo.com

Abstract One of the major priorities for today's agriculture is the implementation of a sustainable system, context where zeolite could feet very well due to its influence in production increase and soil quality. The results achieved by the research conducted until present days recommend the use of zeolite in agriculture being highlighted the positive role of zeolite in plant nutrition and in the stability of microbial community. In Romania there is a lack of knowledge concerning the effect of zeolite on soil microbial community. Therefore thru this research we followed the effect of zeolite on soilmicroorganism on three of the most used cultures from our country. The experiences were installed in Agricultural Research Development Turda, Cluj County on an argillic (clay illuviated) soil. The climate specific for the experimental area is continental, with an annual average temperature of the last 57 years of 8.40C and an annual sum of rainfall of 540 mm. The biological material consists in soybean (Glycine max L. Merril, Felix variety), spring barley (Hordeum vulgare L., Romanita variety) and corn (Zea mays L., Turda Star variety). The experience covers 6 experimental plots, in 2 replicates. Each plant was cultivated in 2 experimental variants (control and a treated variant), as follows: soybean (S1 – control variant, untreated; S2 - treated with 100 kg/ha zeolite), spring barley (O1 - control variant, untreated, O2 - treated with 150 kg/ha zeolite) and corn (P1 – control variant, untreated; P2 - treated with 200 kg/ha zeolite). The evaluation of the decomposition groups was undertaken on 15 different substrates, responsible for the decomposition of amino sugars, amino acids, neutral sugars and carboxylic acid. The profile of microbial community was asses using MicroResp method. Determination were performed on the University for Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, on the Laboratory for Soil microbiology. The experimental data were statistically analyzed using Statistica program, version 10. Our results showed that the input of zeolite has a positive effect on the stability of soil microbial community, the highest value being achieved on the group specialized in the decomposition of oxalic acid.

Key words: microbial community, soybean, spring barley, corn

INTRODUCTION

Soil microbial diversity is huge, as it was shown by TORSVIK *ET AL*. (1990), who reported that one single gram of soil contains thousands of bacterial species. Microbial communities have the ability to adapt to changing environmental conditions by different ways such as modification of individual activity, increasing reproduction of species with favorable abilities or by developing new capabilities via horizontal gene transfer (VIDICAN AND STOIAN, 2015).

Despite the importance of the carbon-transformation function, there are, as yet, no robust and validated methodologies for assessing the ability of the soil microbial community to metabolize a wide range of substrates. One potential approach is the so-called community-level physiological profiling (CLPP) profiling technique, pioneered by GARLAND AND MILLS (1994). The basis of this concept is to measure simultaneously the extent to which the soil community can metabolize a range of carbonaceous substrates supplied separately but in tandem. A

popular version of the technique utilizes $Biolog^{TM}$ plates, which allow researchers to measure simultaneously the metabolic utilization of a suite of 95 (or more) compounds. Many studies have demonstrated how such Biolog response profiles discriminate between soils, communities and environmental factors (such as, GARLAND 1996, INSAM AND RANGGER 1997, GRAYSTON *ET AL*. 2004).

One of the major priorities for today's agriculture is the implementation of a sustainable system, context where zeolite could feet very well due to its influence in production increasement and soil quality (SFECHIŞ, 2015). The results achieved by the research conducted until present days recommend the use of zeolite in agriculture being highlighted the positive role of zeolite in plant nutrition and in the stability of microbial community (MUMPTON, 1999). In Romania there is a lack of knowledge concerning the effect of zeolite on soil microbial community.

This research aims to follow the effect of zeolite on soil-microorganism on three of the most used cultures in Romania. In order to accomplish our goal we analyzed the response of the physiological profile of the microbial community to the inputs of zeolite.

MATERIAL AND METHODS

The experiences were installed in Agricultural Research Development Turda, Cluj County on an argillic (clay illuviated) soil. The climate specific for the experimental area is continental, with an annual average temperature of the last 57 years of 8.40C and an annual sum of rainfall of 540 mm.

The biological material consists in soybean (*Glycine max* L. Merril, Felix variety), spring barley (*Hordeum vulgare* L., Romaniţa variety) and corn (*Zea mays* L., Turda Star variety). The experience covers 6 experimental plots, in 2 replicates. Each plant was cultivated in 2 experimental variants (control and a treated variant), as follows: soybean (S1 – control variant, untreated; S2 – treated with 100 kg/ha zeolite), spring barley (O1 – control variant, untreated; O2 - treated with 150 kg/ha zeolite) and corn (P1 – control variant, untreated; P2 - treated with 200 kg/ha zeolite).

The evaluation of the decomposition groups was undertaken on 15 different substrates, responsible for the decomposition of amino sugars, amino acids, neutral sugars and carboxylic acid. The profile of microbial community was asses using MicroResp method. This method determinates the reaction of microbial community to different carbon sources (amino sugars, amino acids, neutral sugars and carboxylic acids (TIILI *ET AL.*, 2011). MicroResp method is characterized by several advantages among which the simplicity in using it is one of the most important. Determination were performed on the University for Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, on the Laboratory for Soil microbiology. The experimental data were statistically analyzed using Statistica program, version 10.

RESULTS AND DISCUSSIONS

Our results highlighted that the highest values are recorded on the group specialized in oxalic acid decomposition, experimental plot where we registered a minimum consume of 1,14 μ g CO2-C/g/h and a maximum consume of 6,73 μ g CO2-C/g/h (Table 1). In the same time all of the neutral sugars (D-trehalose, D-galactose, D-glucose, L-arabinose, D-fructose) were well metabolized by microorganisms having very significant values from statistical point of view. The lowest values were achieved on L-arginine (0,17 μ g CO2-C/g/h and 1,19 μ g CO2-C/g/h), values assured from statistical point of view.

					Table 1
		Profile of the mi	crobial community	/	
Source of carbon	N Valid	Signification	Minimum	Maximum	Std. Dev.
Nacet	18	1.08	0.33	1.54	0.30
Oxalac	18	1.98	1.14	6.73	1.51
Dtreh	18	1.44	0.50	2.14	0.43
Aminob	18	0.86	0.48	1.05	0.15
Ketog	18	3.75	2.64	4.52	0.56
Llys	18	0.85	0.49	1.21	0.17
Lmal	18	2.46	1.45	4.83	1.00
Lcys	18	1.00	0.59	1.70	0.26
Dfruc	18	1.92	1.07	2.47	0.38
Dgalac	18	1.32	0.67	1.69	0.38
Dgluc	18	1.96	1.25	2.53	0.32
Lalan	18	1.09	0.75	1.39	0.18
Larab	18	1.52	0.84	1.98	0.28
Larg	18	0.77	0.17	1.19	0.31
Citrac	18	3.20	1.62	5.27	0.83
Dwat	18	0.74	0.47	0.93	0.13

The input of zeolite produces powerful variations on the group specialized in N-acetyl-glucosamine (Table 2). The differences recorded on soybean are very significant (p<0,05), and the activity of the microbial group on soybean without any input was higher than the activity recorded on both experimental plot with corn (p<0,001).

							Table 2	
	Т	he dynamic	of acetyl-g	lucosamine	decompose	rs		
Experimental	Average	Experimental plot						
plot	Average	S1	S2	P1	P2	01	O2	
S1	1.51		0.042	0.000	0.000	0.003	0.016	
S2	1.22	0.042		0.022	0.001	0.186	0.608	
P1	0.90	0.000	0.022		0.141	0.246	0.058	
P2	0.68	0.000	0.001	0.141		0.016	0.003	
01	1.04	0.003	0.186	0.246	0.016		0.398	
02	1.15	0.016	0.608	0.058	0.003	0.398		
S1-soybean-control; S2-soybean-100 kg/zeolite; P1-corn-control; P2-corn-200kg/zeolite; O1-spring barley- control; O2-spring barley 150kg/zeolite.								
p<0.05 *; p<0.01**; p<0.001***.								

Differences were registered also in the group specialized in the decomposition of γ aminobutyric acid, between the experimental plot fertilized with zeolite compared to control (Table 3). We observed that the input with zeolite results in a lower intensity of decomposition on all amino acids, except of the experimental plot with spring barley on γ -amino butyric substrate.

Tahle	3
1 aoic	-

Source of carbon	Experimental	Average	ge Experi					
	- plot		S1	S2	P1	P2	01	O2
	S1	1.02		0.050	0.021	0.001	0.080	0.643
	S2	0.84	0.050		0.645	0.033	0.798	0.115
γ-	P1	0.80	0.021	0.645		0.077	0.477	0.051
aminobutyric	P2	0.64	0.001	0.033	0.077		0.021	0.001
uera	01	0.86	0.080	0.798	0.477	0.021		0.176
	02	0.98	0.643	0.115	0.051	0.001	0.176	
	S1	0.72		0.446	0.000	0.000	0.000	0.870
	S2	0.78	0.446		0.000	0.000	0.001	0.546
L-arginine	P1	1.20	0.000	0.000		0.000	0.665	0.000
acid	P2	0.17	0.000	0.000	0.000		0.000	0.000
	01	1.07	0.000	0.001	0.665	0.000		0.000
	O2	0.73	0.870	0.546	0.000	0.000	0.000	D1 O2 080 0.643 798 0.115 477 0.051 021 0.001 0.176 0.01 176 000 000 0.870 001 0.546 665 0.000 000 0.000 000 0.000 000 0.000 000 0.209 969 0.189 724 0.340 356 0.039 0.201 201 203 0.021 048 0.288 194 0.783 968 0.313 0.295 295 495 0.891 475 0.865 900 0.501 079 0.199 0.583 583 xg/zeolite; O1-
	S1	0.84		0.948	0.744	0.343	0.005	0.209
	S 2	0.83	0.948		0.696	0.376	0.969	0.189
I Irvino	P1	0.90	0.744	0.696		0.211	0.724	0.340
L-tystile	P2	0.70	0.343	0.376	0.211		0.356	0.039
	01	0.83	0.979	0.969	0.724	0.356		0.201
	02	1.02	0.209	0.189	0.340	0.039	0.201	
	S 1	1.34		0.147	0.035	0.003	0.003	0.021
	S 2	1.17	0.147		0.423	0.051	0.048	0.288
	P1	1.08	0.035	0.423		0.206	0.194	0.783
L-alanine	P2	0.94	0.003	0.051	0.206		0.968	0.313
	01	0.93	0.003	0.048	0.194	0.968		0.295
	O2	1.05	0.021	0.288	0.783	0.313	0.295	
	S1	1.01		0.973	0.421	0.247	0.495	0.891
	S2	1.02	0.973		0.403	0.259	0.475	0.865
. .	P1	0.70	0.421	0.403		0.063	0.900	0.501
L-cystein	P2	0.60	0.247	0.259	0.063		0.079	0.199
	01	0.86	0.495	0.475	0.900	0.079		0.583
	02	0.98	0.891	0.865	0.501	0.199	0.583	
	S1-soybean-control; S2-soybean-100 kg/zeolite; P1-corn-control; P2-corn-200kg/zeolite; O1- spring barley-control; O2-spring barley 150kg/zeolite.							

In the same time our results showed that all of the neutral sugars were very well metabolized by microorganism having values very significant from statistical point of view

(Table 4). The microorganism responsible for D-galactose decomposition are obviously encouraged by zeolite input such that between the two experimental plots cultivated with spring barley the differences are distinguished significant.

Та	bl	e	4
Ta	bl	e	4

	The dynamic of neutral sugars decomposers								
Source of carbon	Experimental	Average	Experimental plot						
	– plot	-	S1	S2	P1	P2	01	O2	
	S 1	2.09		0.045	0.022	0.000	0.021	0.061	
	S2	1.48	0.045		0.697	0.014	0.688	0.865	
γ- D-	P1	1.40	0.022	0.697		0.029	0.990	0.578	
trehalose	P2	0.82	0.000	0.014	0.029		0.030	0.010	
	01	1.39	0.021	0.688	0.990	0.030		0.570	
Source of carbon γ- D- trehalose D-galactose L-arabinose D-fructose	02	1.52	0.061	0.865	0.578	0.010	0.570		
	S 1	1.67		0.961	0.048	0.012	0.000	0.100	
	S 2	1.67	0.961		0.044	0.011	0.000	0.092	
	P1	0.78	0.048	0.044		0.455	0.002	0.685	
D-galactose	P2	1.18	0.012	0.011	0.455		0.006	0.258	
	O1	0.68	0.000	0.000	0.002	0.006		0.001	
	02	1.38	0.100	0.092	0.685	0.258	0.001		
	S 1	1.83		0.767	0.019	0.007	0.023	0.057	
	S2	1.78	0.767		0.034	0.011	0.040	0.097	
Larabinosa	P1	1.37	0.019	0.034		0.569	0.926	0.564	
L-arabinose	P2	1.27	0.007	0.011	0.569		0.510	0.262	
	01	1.39	0.023	0.040	0.926	0.510		0.627	
	O2	1.47	0.057	0.097	0.564	0.262	0.627		
	S 1	2.45		0.051	0.363	0.851	0.962	0.021	
	S2	2.02	0.051		0.245	0.072	0.047	0.288	
	P1	1.24	0.363	0.245		0.466	0.340	0.783	
D-fructose	P2	1.07	0.851	0.072	0.466		0.813	0.313	
	01	1.83	0.962	0.047	0.340	0.813		0.295	
	O2	1.77	0.684	0.105	0.607	0.826	0.649		
	S1-soybean-control; S2-soybean-100 kg/zeolite; P1-corn-control; P2-corn-200kg/zeolite; O1- spring barley-control; O2-spring barley 150kg/zeolite.								

Analyzing the dynamic of the group specialized in carboxylic acids decomposition our results highlighted that the input of zeolite doesn't influence too much the decomposition, the differences recorded being in general insignificant or with low signification from statistical point of view (Table 5). Exception is the group specialized in L-malic acid where we recorded increases as a result of zeolite input.

Table 5

The dynamic of carboxylic acid decomposers								
Source of carbon	Experimental	Average						
	- plot		S1	S2	P1	P2	01	O2
	S1	1.36		0.852	0.791	0.000	0.774	0.934
	S2	1.45	0.852		0.937	0.000	0.637	0.788
Orrellie e si d	P1	1.49		0.791		0.000	0.583	0.729
Oxalic acid	P2	5.05		0.000	0.000		0.000	0.000
	01	1.21		0.852	0.791	0.000	0.774	0.934
	O2	1.32	0.852		0.937	0.000	0.637	0.788
	S1	4.15		0.547	0.872	0.017	0.007	0.010
	S2	4.33	0.547		0.448	0.005	0.002	0.003
α- Ketoglutaric	P1	4.10	0.872	0.448		0.023	0.010	0.013
Ketoglutaric acid	P2	3.36	0.017	0.005	0.023		0.642	0.774
	O1	3.22	0.007	0.002	0.010	0.642		0.858
	02	3.28	0.010	0.003	0.013	0.774	0.858	
	S1	2.71		0.100	0.258	0.054	0.730	0.836
	S2	3.76	0.100		0.564	0.732	0.054	0.142
	P1	3.41	0.258	0.564		0.364	0.149	0.348
Citile acid	P2	3.97	0.054	0.732	0.364		t O1 O2 0.774 0.934 0.637 0.788 0.583 0.729 0.000 0.000 0.774 0.934 0.637 0.788 0.007 0.010 0.002 0.003 0.010 0.013 0.642 0.774 0.858 0.730 0.836 0.054 0.142 0.149 0.348 0.029 0.079 0.583 0.583 0.583 0.144 0.480 0.037 0.155 0.092 0.340 0.000 0.000 0.420 rm-200kg/zeolite; O1-ie.	0.079
	01	2.50	0.730	0.054	0.149	0.029		0.583
	02	2.83	0.836	0.142	0.348	0.079	00 0.774 0 00 0.637 0 00 0.637 0 00 0.583 0 00 0.583 0 00 0.583 0 00 0.583 0 00 0.774 0 00 0.637 0 17 0.007 0 05 0.002 0 23 0.010 0 042 0 0 74 0.858 0 54 0.730 0 32 0.054 0 64 0.149 0 00 0.37 0 00 0.037 0 00 0.092 0 00 0.000 0 00 0.420 0	
	S 1	2.16		0.446	0.796	0.000	0.144	0.480
	S2	2.43	0.446		0.610	0.000	0.037	0.155
	P1	2.11	0.796	0.610		0.000	0.092	0.340
L-malic acid	P2	3.61	0.000	0.000	0.000		0.000	0.000
	01	1.63	0.144	0.037	0.092	0.000		0.420
	O2	1.91	0.480	0.155	0.340	0.000	0.420	
	S1-soybean-	control; S2-soyl spring b	bean-100 kg arley-contro	/zeolite; P1 l; O2-sprin	l-corn-cont g barley 15	rol; P2-corn 0kg/zeolite.	-200kg/zeol	ite; O1-
			p<0.05 *;	p<0.01**;	p<0.001**	*.		

CONCLUSIONS

Based on the results achieved we conclude that the input of zeolite can have a favorable effect on the stability of soil microbial community.

Our results pointed out that the highest values are achieved on the group specialized in oxalic acid decomposition.

Positive reaction was observed also on neutral sugars which seemed to be very well metabolized by microorganism with values very significant from statistical point of view.

Variations in the functional compound of microbial community appeared on the variants fertilized with zeolite lead to the appearance of cyanobacteria on all of the 3 cultures studied with the highest values recorded on corn crop $(3,97 \ \mu g \ CO2-C/g/h)$.

BIBLIOGRAPHY

- GARLAND, J. L., 1996. Patterns of potential C source utilization by rhizosphere communities. Soil Biology and Biochemistry, 28, 223–230.
- GARLAND, J. L. AND MILLS, A. L., 1994. A community-level physiological approach for studying microbial communities. In: K. Ritz, J. Dighton and K. E. Giller, eds. Beyond the biomass: compositional and functional analysis of soil microbial communities. Chichester, UK: John Wiley, 77-83.
- GRAYSTON, S. J., CAMPBELL, C. D., BARDGETT, R. D., MAWDSLEY, J. L., CLEGG, C. D., RITZ, K., GRIFFITHS, B. S., RODWELL, J. S., EDWARDS, S. J., DAVIES, W. J., ELSTON, D. J. AND MILLARD, P., 2004. Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Applied Soil Ecology, 25, 63–84.
- INSAM, H. AND RANGGER, A., 1997. Microbial communities: functional versus structural approaches. Berlin: Springer Verlag.
- MUMPTON, F.A., 1999. La roca magica: Uses of natural previous zeolites in agriculture and industry. Proceedings of National Academy of Sciences of the United States of America 96, 3463-3470.
- SFECHIŞ, SUSANA, 2015. Researches concerning the influence of zeolite input on productivity and microbial activity on barley, soybean and corn on ARDS Turda. PhD thesis, USAMV Cluj-Napoca.
- VIDICAN, ROXANA, STOIAN, VLAD, 2015. Enzyme Activity Indicator of Soil Biological Dynamics. Proenvironment 8(24): 553-558.