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Abstract. Currently, agriculture faces major challenges related to the efficient utilization of
natural resources, the optimization of crop productivity, and the maintenance of sustainable practices
under increasingly unpredictable climatic conditions. Traditional monitoring techniques are often limited
in spatial and temporal coverage, making it difficult to achieve timely and accurate assessments of land
surface conditions. This study proposes the creation of an intelligent system for monitoring land surface
coverage, encompassing agricultural crops, grasslands, and various land types, utilizing open-source
satellite data and integrating machine learning models. The research is applied in the Banat region of
Romania, a representative area for lowland agricultural ecosystems. The system acquires 20 meter
resolution RGB imagery from the Copernicus browser, which is then processed to compute vegetation
indices such as ExGR (Excess Green minus Red Index). These indices are essential indicators for
evaluating vegetation health, density, and soil moisture. The processed data are subsequently analyzed
using supervised and unsupervised learning algorithms to automatically classify land cover types with a
high degree of accuracy. The results demonstrate that the proposed system effectively identifies and
monitors diverse land surfaces, supporting improved agricultural management and precision farming
strategies. This research highlights the potential of combining remote sensing, open-source satellite
imagery, and artificial intelligence to create scalable, cost-efficient tools for sustainable agricultural and
environmental monitoring.
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INTRODUCTION

The Normalized Difference Vegetation Index (NDVI) is the most widely adopted and
standard remote sensing index for monitoring the health, growth, and biomass of vegetation
across various environments (GANDHI ET AL., 2015; BOORI ET AL., 2020; BENTO ET AL., 2020).
Its pervasive use in fields such as agriculture, forestry, ecology, and land management, for
tasks including crop yield estimation, land cover classification, and ecosystem monitoring,
stems from its simplicity, broad applicability, and the ease with which it can be calculated (Hu
ET AL., 2009; HATFIELD ET AL., 2019; SOUBRY ET AL., 2021).

Despite its utility, NDVI has several significant and well-documented limitations that
can affect the accuracy and reliability of monitoring efforts (HUANG ET AL., 2020; LI ET AL.,
2021). These limitations underscore the need for awareness and the development of alternative
methodologies:

» Dependence on Multispectral Sensors: Calculating NDVI strictly requires sensors
capable of capturing both red and NIR bands. Variability in sensor quality, calibration, and
spectral response across different instruments introduces inconsistencies, which complicates

483


http://doi.org/10.59463/RJAS.2025.4.59

Research Journal of Agricultural Science, 57 (4), 2025; ISSN: 2668-926X;
http://doi.org/10.59463/RJAS.2025.4.59

the continuity and comparability of data, especially across different platforms or time periods
(HUANGET AL., 2020; LI ET AL., 2021; ROSSI ET AL., 2019).

« Atmospheric Interference: NDVI values are inherently sensitive to atmospheric
conditions like clouds, haze, and water vapor. These factors distort the measured surface
reflectance, which in turn reduces the reliability of the data and represents a major source of
uncertainty, particularly in satellite-based products (HUANG ET AL., 2020; LIET AL., 2021).

« Saturation at High Biomass: Perhaps the most critical limitation is that NDVI tends
to saturate in dense vegetation or high biomass conditions. Once a certain density, such as a
high leaf area index (LAI), is reached, the index loses its sensitivity and no longer accurately
registers further increases in biomass. This saturation limits its effectiveness for monitoring
mature crops, dense forests, or high-density grasslands (HUANG ET AL., 2020; L1ET AL., 2021).

In this context, RGB imagery, acquired from drones, aerial cameras, or high-
resolution satellite sensors (SIMON ET AL., 2020; SIMON ET AL., 2021), has emerged as a
promising substitute. RGB images are abundant, inexpensive, and easier to collect compared to
multispectral or hyperspectral data. Although RGB sensors lack the NIR band traditionally
used in vegetation indices, advances in computer vision and deep learning have enabled the
extraction of complex features from standard colour channels. These developments open new
possibilities for assessing vegetation dynamics and detecting subtle spatial and temporal
patterns in agricultural and natural landscapes.

The present study aims to develop a hybrid approach that combines convolutional
neural network (CNN)-based feature extraction with pixel-level vegetation analysis to estimate
vegetation health indicators from RGB imagery without relying on NIR data. The proposed
pipeline integrates traditional colour-based indices—such as Excess Green Index (ExG)—with
high-level features derived from a CNN trained to capture spatial and textural information. By
applying this methodology to multiannual RGB datasets from the Banat region of Romania, the
study evaluates temporal changes in surface and vegetation conditions over several growing
seasons. The main contributions of this work include (1) demonstrating the potential of RGB-
only data for large-scale vegetation monitoring, (2) introducing a hybrid analytical framework
that bridges traditional pixel-based and Al-driven methods, and (3) providing a regional case
study highlighting the applicability of this approach in agricultural and environmental
assessment contexts.

MATERIALS AND METHODS

Study Area

The study area for this research is the Banat region of Romania, situated in the
western part of the country. This region is geographically and agronomically representative of
lowland agricultural systems across Central and Eastern Europe (Rusu, 2007).

The Banat features a temperate continental climate characterized by moderate
precipitation and distinct seasonal variations (SMULEAC ET AL., 2020). Topographically, it is
dominated by fertile plains, which support intensive agricultural activities. The primary
agricultural production (BORDEAN ET AL., 2013; AGAPIE ET AL., 2020) in this area includes key
European crops such as wheat, maize, sunflower, and rapeseed.

The long-term monitoring capabilities enabled by the dataset, in conjunction with the
region's diverse and typical agricultural landscape, make the Banat an ideal and relevant
testbed for assessing multiannual changes in surface dynamics and vegetation health (COSTEA
ET AL., 2012).
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Dataset Description

The dataset used in this research consists of RGB imagery derived from Sentinel-2
satellite data, accessed via the Copernicus Browser. Only the visible spectral bands (red, green,
and blue) were utilized in order to assess vegetation dynamics without relying on near-infrared
(NIR) information. The temporal coverage spans 2019 - 2025, enabling a seven-year
multiannual analysis of surface and vegetation changes across different agricultural and semi-
natural environments. The images were downloaded as Level-2A products, which already
include atmospheric and radiometric corrections provided by the Copernicus processing chain.
Therefore, no additional manual preprocessing was performed. To ensure spatial and temporal
consistency, all images were selected based on minimal cloud coverage and comparable
acquisition periods within the vegetation growing season (around 1st of May).

Pixel Based Analysis

The first analytical stream focuses on extracting vegetation information directly from
the Red (R), Green (G), and Blue (B) bands of the pre-processed RGB images. A suite of
colour-based vegetation indices (C-VIs) is computed for every pixel to provide quantitative
metrics related to greenness and photosynthetic vigour, serving as surrogates for the standard
Normalized Difference Vegetation Index (NDVI) which is unavailable in pure RGB data. The
C-Vis include the Excess Green Index (ExG), Excess Red Index (ExR), Visible
Atmospherically Resistant Index (VARI), Green Leaf Index (GLI) (MARCIAL-PABLO ET AL.,
2018; MEYERET AL., 2008).

To ensure comparability across the multiannual time series and the different sensors,
all computed indices undergo normalization. This involves scaling index values to a common
range ([-1, 1]) using min-max normalization, which minimizes radiometric and sensor-specific
inconsistencies inherent in the heterogeneous dataset. Subsequently, the spatial and temporal
dynamics of vegetation are summarized using comprehensive statistical metrics.

CNN - feature extraction

The second stream employs a Convolutional Neural Network (CNN) for extracting
high-level, abstract semantic features that are not explicitly captured by simple band arithmetic.
The developed CNN architecture is a custom model that employs a series of convolutional
layer, a flattened layer and 2 fully connected layers, making it structurally analogous to the
ResNet18 framework, selected for its balance of representational power and computational
efficiency (Figure 1).
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Figure 1. CNN model architecture

The convolutional neural network (CNN) component of the proposed framework was
designed to extract high-level spatial and textural features from RGB imagery, providing a
deep representation of vegetation structure and surface characteristics. A custom CNN
architecture was developed in PyTorch, inspired by residual learning concepts from ResNet
models, but implemented and trained entirely from scratch. Unlike conventional transfer
learning approaches, no pretrained weights were used, ensuring that the network learned
features specifically relevant to satellite and aerial imagery of vegetation surfaces.

The model, referred to as SatellittCNN, consists of four convolutional blocks with
increasing feature depth (32, 64, 128, and 256 filters), each followed by batch normalization,
ReL U activation, and max pooling. This hierarchical design enables progressive abstraction
from low-level colour and edge information to high-level spatial textures characteristic of
vegetation canopies. The convolutional feature maps are flattened and passed through two fully
connected layers (1024 and N output units, where N is the number of land-cover classes in the
EuroSAT-RGB dataset), with dropout regularization (rate = 0.5) applied to mitigate overfitting.
The network was optimized using the Adam algorithm (learning rate = 0.001) and a cross-
entropy loss function. A learning rate scheduler was employed to adaptively reduce the
learning rate when validation performance plateaued.

Training was performed on the EuroSAT-RGB dataset, a large-scale benchmark
derived from Sentinel-2 imagery, which was split into 80% training and 20% test data (HELBER
ET AL., 2018). Data augmentation techniques, including random rotations, horizontal and
vertical flips, and color jittering, were applied to enhance generalization. The model achieved
its best validation accuracy after 50 epochs, with weights saved for feature extraction.

After training, deep features were extracted from the final convolutional layer prior to
the fully connected layers, capturing spatial-spectral patterns representative of vegetation and
surface variability.

RESULTS AND DISCUSSION

The hybrid analytical method that combined convolutional neural network (CNN)
classification with vegetation colour index computation was applied to monitor the evolution of
vegetation vigour on the analysed parcel between 2019 and 2025. The mean Excess Green
Index (EXGR), calculated from Sentinel imagery around May 1st (£5 days), provides an annual
indicator of canopy development at the beginning of the vegetative season.
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As shown in Table 1, EXGR values fluctuated across the study period, ranging from a
minimum of —0.082 in 2020 to a maximum of 0.373 in 2023. Overall, a positive trend is
observed, indicating improved vegetation greenness and canopy density over time.

Table 1.
EXGR mean from 2019 to 2025
Year EXGR mean Precipitation 30 Temperature means 30
lot A days before! (mm) days before? (°C)

2019 0.078 12.7* 13

2020 -0.082 4.3 10.3

2021 0.261 22.2* 9.3

2022 0.161 32.6* 10.6

2023 0.373 58.6 9.3

2024 0.242 234 13.8

2025 0.266 16.8 12.8
1 - Averages taken from the website: https://meteostat.net, Timisoara weather station.
2 - Averages taken from the website: https:/meteostat.net, Timisoara weather station.

The lowest value in 2020 may be attributed to the low cumulative precipitation (only
4.3 mm in the previous 30 days) and relatively low average temperature (10.3 °C), which likely
delayed early-season growth. In contrast, the highest EXGR in 2023 coincides with the highest
recorded precipitation (58.6 mm), confirming the sensitivity of vegetation indices to soil
moisture availability.

Between 2021 and 2025, EXGR values remained positive and relatively stable (0.16—
0.37 range), suggesting consistent vegetation development and possibly improved land
management practices. This pattern may reflect both favourable climatic conditions and
adaptation of local agricultural strategies, such as optimized grazing timing or canopy
conservation practices.

A moderate positive relationship can be visually observed between ExXGR and
precipitation, supporting the assumption that water availability is a major driver of vegetation
greenness. The influence of temperature appears secondary, as the years with higher average
temperatures (e.g., 2019 and 2024) do not directly correspond to the highest EXGR values
(Figure 2). This indicates that within the studied temperature range (9-14 °C), moisture stress
is more limiting than temperature for early spring vegetation development.

The CNN model used for classification achieved an accuracy exceeding 95% on the
test dataset, ensuring reliable extraction of vegetated areas at the parcel level (SiMION, 2025).
This high precision supports the validity of the observed trends and demonstrates the
robustness of the hybrid approach in handling RGB satellite data with minimal manual
intervention.
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Figure 2. Graph with the evolution trend of EXGR

The integration of CNN-based classification with vegetation indices allows for
continuous and automated monitoring of agricultural parcels (Figure 3).

The hybrid method effectively captures both temporal dynamics and climatic
influences on vegetation, enabling early detection of stress or productivity changes. As such,
this workflow represents a cost-efficient and scalable solution for precision agriculture and
supports sustainable management through data-driven decision-making (COSTEA ET AL., 2012;
ZLINSZKY ET AL., 2015; COPACEAN ET AL., 2019; ZHANG ET AL., 2021; WANG ET AL., 2022).
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Figure 3. EXGR index ffom 2019 (left) to 2025(right)
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Nevertheless, some limitations must be acknowledged. The absence of near-infrared
(NIR) data constrains the capacity to detect early signs of stress, as many physiological
changes in vegetation occur before they are visible in the RGB spectrum. In addition,
illumination variability, resulting from atmospheric conditions, time of capture, or sensor
angle, introduces potential inconsistencies in reflectance values. While the hybrid method
mitigates part of these issues through preprocessing and statistical normalization, further
refinement is required to achieve higher accuracy in temporal trend estimation.

Future research should focus on integrating RGB data with complementary
information sources such as multispectral imagery and LiDAR data. The inclusion of NIR or
red-edge bands would allow for more precise quantification of chlorophyll content and biomass
estimation. Moreover, the application of Long Short-Term Memory (LSTM) neural networks
could enhance temporal prediction by learning complex patterns in vegetation dynamics,
enabling early detection of degradation or recovery trends. Expanding this approach to diverse
ecosystems beyond grasslands would further validate its robustness and generalizability.

CONCLUSIONS

This study demonstrates that RGB imagery, even when derived from publicly
available satellite sources such as the Copernicus Sentinel program, can provide valuable
insights into vegetation health dynamics over time. By focusing on grasslands, which represent
relatively stable ecosystems with limited anthropogenic and seasonal variability, the analysis
isolates vegetation-related changes and minimizes confounding environmental factors. The
results reveal a clear upward trend in greenness from 2019 to 2025, indicating a gradual
improvement in vegetation vigour across the study area.

The hybrid analytical approach proposed in this research—combining convolutional
neural network (CNN) classification, RGB-based colour index computation, and statistical
trend analysis—proved to be both robust and adaptable. The CNN effectively classified
vegetation areas and reduced background noise, while the colour-based indices (derived from
visible spectral bands) captured subtle temporal changes in vegetation reflectance. This
integrated framework enhanced the reliability of RGB-based assessments, bridging the gap
between traditional visual analysis and more complex multispectral or hyperspectral
monitoring methods.

One of the main advantages of this approach lies in its accessibility and scalability.
Unlike multispectral sensors that require dedicated equipment and calibration, RGB imagery
from the Sentinel program or other open-access sources can be processed with minimal
resources. This makes the method particularly attractive for large-scale or long-term
environmental monitoring, supporting sustainable land management where advanced remote
sensing tools are not readily available. By demonstrating the feasibility of using RGB imagery
for continuous vegetation health assessment, the study contributes to the development of low-
cost, data-driven solutions that align with the goals of precision agriculture and environmental
sustainability.

This study highlights the potential of combining open-access RGB imagery, deep
learning, and statistical analysis as an effective framework for sustainable vegetation
monitoring. The methodology bridges the gap between advanced remote sensing technologies
and practical, resource-efficient applications, demonstrating how artificial intelligence can
support environmental stewardship and long-term ecosystem resilience..
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