RESEARCHES REGARDING SOME MORPHOLOGICAL HARACTERS OF PRODUCTION IN DIFFERENT PHENOPHASES AT TRIFOLIUM ALEXANDRINUM L.

CERCETĂRI PRIVIND UNELE CARACTERE MORFOLOGICE DE PRODUCTIE, ÎN DIFERITE FENOFAZE LA TRIFOLIUM ALEXANDRINUM L.

FLORIN MARIAN*, A. MOISUC*, LUMINITA COJOCARIU*, M. HORABLAGA*

*Banat's University of Agricultural Sciences and Veterinary Medicine, Timişoara, Romania

clover is different taking into account the harvest phenophase and it is conditioned by different production elements like: number of tillers, bush height and leaf surface. In this paper, we propose to observe the influence of different production characters, on berseem clover, in different harvest phenophases. The results obtained have shown that the bush weight realizes the biggest production in 69 phenophase, leaf surface having the biggest influence on bush weight, namely 56 % of its weight.

Abstract: The production capacity of berseem Rezumat: Capacitatea de producție a trifoiului de alexandria este diferită în funcție de fenofaza de recoltare si este conditionată de diferite elemente de producție, cum ar fi: numărul de lăstari, înălțimea tufei și suprafața foliară. În această lucrare, ne propunem să observăm influența diferitelor caractere de producție, asupra trifoiului de Alexandria, în diferite fenofaze de recoltare. Rezultatele obținute au arătat că greutatea tufei realizează cea mai mare producție în fenofaza 69, influența cea mai mare asupra greutății tufei având-o suprafața foliară, de 56 % din greutatea

Key words: trifolium alexandrinum, phenophases, production characters, bush weight Cuvinte cheie: trifoi de alexandria, fenofaze, caractere de producție, greutatea tufei

INTRODUCTION

Trifolium alexandrinum is a forage plant met only in cultivated form, sometimes it is met in natural form in Egypt and neighbouring countries (OPROI CRISTINA, 2005).

Trifolium alexandrinum is adapted to a Mediterranean climate with light winters and without excessive drought during summer. It has a good productive potential and can be turned to advantage in manner ways: green fodder, hay, silo, pasture, green manure (HATHOUT M.K., 1996).

It gives high quality forage with a content of crude protein of 20-30 % from dry substance, which in general is of 10-17 t/ha, taking into account the breed and culture conditions. There have not been reported bloats at the animals that eat this clover in fresh green mass form (KNIGHT, W.E., 1985, REYNOLDS M.O., 1994, BOSWALL P., 2004,).

It is a species of annual clover that can be cultivated in pure culture and in mixture with other species susch as: leguminous (alfalfa, Trifolium incarnatum, white clover, tare), annual ryegrass and cereals: oat, wheat, barley (G.W. EVERS, 2006, ROSS S.M., et al., 2004).

MATERIAL AND METHOD

Experiences have been realised at the Didactic Station of Banat's University of Agricultural Sciences and Veterinary Medicine Timisoara.

In the paper we present the variant analyses for multiple regression on the main morphologic characters of production, obtained in 3 different phenophases (51 - Inflorescence emerged from sheath, 61 - beginning of flowering, 69 - full flowering), from 2007

experimental year. This permitted to realise some conclusions on production capacity on plant, but also to adapt *Trifolium alexandrinum* at actual culture conditions from West Plane.

Year 2007, in vegetation period, was characterised by high temperatures, over the average of multi-annual temperatures, with a few precipitations, which led to different results comparative to specialty bibliography.

We used Gorby breed as biologic material. During the vegetation period quantitative determinations have been performed (bush weight) and biometric measurements also (plant height, number of tillers, leaf surface), on the main production characters at cultivated species. These determinations have been realised in 3 different phenophases (Inflorescence emerged from sheath – 51, beginning of flowering – 61, full flowering – 69), according to BBCH code (UWE MEIER 2001).

The interpretation has been realised according to multiple regression variant analysis (CIULCA, 2006).

RESULTS AND DISCUSSIONS

For a more clear prominence of main production characters on plant in different phenophases, in this paper we have studied production morphologic characters at *Trifolium alexandrinum*, in 3 different phenophases.

From tabel 1, one can observe that sowing was realised on March 15, 51 phenophase (Inflorescence emerged from sheath), was realised on May 4, phenophase 61 (floral buds apparition), was realised on May 13 and 69 phenophase (complete flowering) was realised on June 5.

Phenological observations at *Trifolium alexandrinum* (year 2007)

Table 1.

Table. 2

Filehological observations at Trijottum diexandritum (year 2007)				
Observations	Specification			
Observations	Trifolium alexandrinum			
Sowing date	15 March			
Rise date	03 April			
First pear of leafs	10 April			
First tiller apparition	19 May			
Inflorescence emerged from sheath	04 May			
Floral tillers apparition	13 May			
Complete flowering	05 June			

From the multiple regression variant analysis (table 2) in phenophase 51, at Trifolium alexandrinum species, it can be observed that the number of tillers has a positive influence on the realisation of plant weight (95.3 %). In a small measure, the leaf surface also contributes to the weight of the plant (3.30 %) and plant height has a less important influence (1.40 %).

Multiple regression variance analysis at Trifolium alexandrinum species

Variability source	SP	GL	S^2	Test F
Regression	16863.3	3	5621.1	4.25
Tillers number (xi)	16071.4 (95.30%)	1	16071.4	12.15**
Height pi. (xa)	236.1 (1.40%)	1	236.1	0.18
Leaf surface (xs)	555.8 (3.30%)	1	555.8	0.42
Other sources	7936.7	6	1322.8	
Sum	24800	9		•

y=368.96 + 52.32x1 - 0.38x2 - 1.89x3 $R^2 = 0.6799$

Table 2 presents the multiple regression variance analysis for phenophase 61 and can be observed that number of tillers has a positive distinct significant influence at realising plant's weight (81.38 %). Plant height (18.61) and leaf surface (0.01) have a more reduced influence in increasing plant's weight.

The number of tillers has less influence on the plant's weight in phenophase 61 than in phenophase 51.

Multiple regression variance analysis at Trifolium alexandrinum species.

Table. 3

Table 4

With tiple regression variance analysis at Trijolium diexandrimum species.						
Variability source	SP	GL	S^2	Test F		
Regression	19117.7	3	6372.57	4.98*		
Tillers number (xi)	15558.8(81.38%)	1	15558.8	12.15**		
Height pi. (xa)	3558.8 (18.61%)	1	3558.8	2.78		
Leafs surface (xs)	0.10 (0.01%)	1	0.1	0.01		
Other sources	7682.3	6	1280.38			
Sum	26800	9				

y=468.04 + 40.63x1-4.17x2 + 0.01x3 $R^2 = 0.7133$

In phenophase 69, from multiple regression variance analysis (table 3) it can be observed that the number of tillers (39.65%) and leaf surface (56.34%) have a positive influence in realising the plant's weight.

Plant height (4.01%) has a reduced influence in increasing the weight of the plant, which means that plants in this phenophase do not grow in height and only leaf growth takes place.

In this phenophase it can be observed that leaf surface has the biggest influence on production per plant, because plants stopped growing.

Multiple regression variance analysis at Trifolium alexandrinum species

Multiple regression variance analysis at <i>Trifolium alexandrinum</i> species.					
Variability source	SP	GL	S^2	Test F	
Regression	39544.0	3	13181.33	5.00*	
Tillers number (xi)	15681.6(39.65%)	1	15681.6	5.94*	
Height pi. (xa)	1586.8 (4.01%)	1	1586.8	0.6	
Leafs surface (xs)	22275.6 (56.34%)	1	22275.6	8.45**	
Other sources	15816	6	2636		
C	55260	0			

y=558.89 + 17.25x1+2.52x2 -2.38x3 $R^2 = 0.8144$

CONCLUSIONS

From comparative studies of different phenophases, we noticed the following:

- The biggest plant weight of all 3 phenophases studied was recorded in phenophase 69 (complete flowering), as it is normal
- In phenophase 51, the biggest influence on production per plant was presented by the number of tillers (95.30%), this having a positive significant distinct influence in realising the weight of the plant
- In phenophase 61, the biggest influence on production per plant was presented by the number of tillers (81.38%) also, this having a positive significant distinct influence in realising the weight of the plant.
- In phenophase 69, the biggest influence on production per plant was presented by leaf surface (56.34%), this having a positive significant distinct influence on realising the weight of the plant, this phenophase being the maximum period of growth.

LITERATURE

- 1. Boswall P., 2004 -Yield and composition of short term clovers grown alone and with Westerwolds ryegrass, PEI Agriculture, Fisheries and Aquaculture PO Box 1600, Charlottetown, PE C1A 7N3
- 2. CIULCA S., 2006 Experimental methodologies in agriculture and biology, Ed. Agroprint, Timisoara
- 3. Gerald W. Evers, 2006 Managing legume and legume grass mixtures, Extension Center of Overton
- 4. HATHOUT M.K., 1996 Preservation and feeding value of berseem ensiled with ground corn cobs, mol and both additives. Agricultural Research ,44 (3): 85-91.
- 5. KNIGHT, W.E., 1985 Berseem clover, In: N.L. Taylor, Clover science and tehology, A.S.A Monog. 25. Madison, W.I.
- 6. MOISUC A., DUKIC D., 2002 The forage plants culture, Editura Orizonturi Universitare Timișoara, România,pg 50-52, 97-101.
- 7. Oproi Cristina, 2005 Studiul particularități agrobiologice la trifoiul alexandrin, Teză de doctorat
- 8. Ross S.M., King J.R., O'Donovan J.T., Dean S., 2004 Intercropping Berseem Clover with Barley and Oat Cultivars for Forage, Published in Agron. J. 96:1013-1020 (2004). © American Society of Agronomy 677 S. Segoe Rd., Madison, WI 53711 USA
- 9. UWE MEIER, 2001 Growth stages of mono and dycotyledonous plants, BBCH Monograph, Edition 2.