GPS SOLUTIONS FOR ROADS: DIFFERENT GPS OPERATION TYPES AND APPLICATIONS

SOLUTII GPS PENTRU DRUMURI: DIFERITE TIPURI DE OPERATII GPS SI APLICATII

Nicolae Ion BĂBUCĂ*, Valeria CIOLAC*, Cosmin POPESCU*, Adrian SUMULEAC*, Mihaela SPILCA*

University of Agricultural Science from Timisoara, Roamania Country Calea Aradului, 119, cristi.babuca@gmail.com

Abstract: All GPS Surveying is carried out using Rezumat: Toate GPS-urile utilizează diferite differential techniques. That is to say a baseline is measured from a fixed point, (a reference station) to an unknown point (a rover station). This is undertaken using one of two methods: - Post Processing - The raw GPS data from the satellites is recorded and processed in the office using software; Real Time - The processing of the data is carried out as you work, giving an instantaneous and accurate position

tehnici de măsurare. Aceasta este să spunem o bază măsurată de la un punct fix, (stație de referinta) către un punct necunoscut(rover mobil). De aceea putem discuta de două metode: - Post procesare - Datele brute de la sateliții sunt inregistrate și procesate la birou cu softul specific; Real time - Procesarea datelor de face direct pe teren obținând direct acuratețea de cm.

Key word: Stop and go/kinematics methods, real time, post processing Cuvinte cheie: metodele stop and go/cinematica, timp real,post preocesare

INTRODUCTION

- Using GPS for Surveying
- Static
- Rapid Static
- Stop and Go/Kinematic
- Real Time
- · Accuracy and Observation Time

MATHERIAL AND METHOD Static Survey (STS)

- The classical method for long lines and the highest accuracy 3mm + 1ppm baseline

rms

- Classical GPS baseline measurement, where each line is observed for at least two

hours

- The observation time is proportional to the length of the line
- Standard method for lines over 20 Km

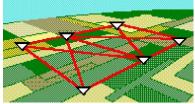


Figure 1: Static Survey (STS)

Applications:

- Geodetic control over large areas
- National and continental networks
- Monitoring tectonic movement
- Network adjustments for highest accuracy

Rapid Static Survey (STS) - 1/2

- Short observation time for baselines up to 20 km. Accuracy is 5-10 mm + 1 p

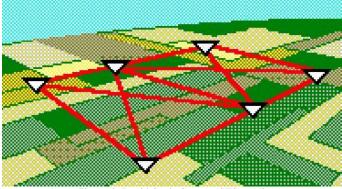


Figure 2. Rapid Static Survey (STS) - 1/2

Applications:

- Control Surveys, GIS city inventories, detail surveys. Replace traversing and local triangulation. Any job where many points have to be surveyed

Advantages

- Easy, quick, efficient
- Ideal for short range survey

Rapid Static Survey (STS) - 2/2

• 1 Reference and 1 Rover

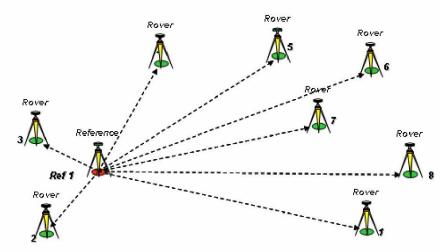


Figure 3. Rapid Static Survey (STS) - 2/2 (1 Reference and 1 Rover)

Ref 1 Rover Rover Rover Rover Reference Ref 1 Rover Rover Rover Reference

Figure 4. Rapid Static Survey (STS) - 2/2 (2 References and 1 Rover)

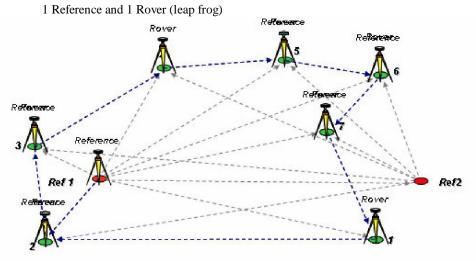


Figure 5. Rapid Static Survey (STS) - 2/2 (1 Reference and 1 Rover (leap frog)

Stop and Go Survey / Kinematic - 1/2

Kinematik mode with static intervals Accuracy is 10 - 20 mm + 1 ppm Stop Mode

- Before the survey begins, the rover is required to resolve the ambiguities.
- The ambiguities are resolved using one of three techniques
- Initialization on the fly
- Static initialization
- Initialization on a known point

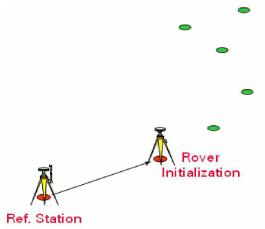


Figure 6. Stop and Go Survey / Kinematic - 1/2

Stop and Go Survey / Kinematic - 2/2 Go Mode

- Once enough data is collected to resolve the ambiguities, user can now move the receiver
 - Lock must be maintained on a minimum of 4 satellites at all time
 - Each point visited requires only 1 epoch of data
 - If lock is lost, the system must re-initialize Applications:
 - Detail and engineering surveys in open areas

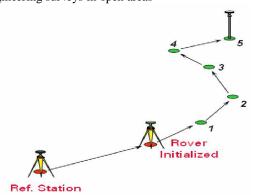


Figure 7. Stop and Go Survey / Kinematic - 2/2

Real Time

Real Time Code, Real Time Phase

- No post processing required
- Results are instantly available
- Can operate in two modes
- RTK
- RT-DGPS

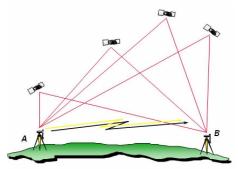


Figure 8. Real Time

CONCLUSION **Accuracy and Observation Times**

Accuracy and Observation Times

Table 1.

Static:

Baseline Length	Number of Satellites	GDOP	Observation Time	Ассигасу
20 - 50 Km	2 4	≤ 6	2 - 3 hr	3 mm + 1 ggm
50 - 100 Km	2 4	≤ 6	min. 3 hr	3 mm + 1 ggm
> 100 Km	> 4	≤ 6	min. 4 hr	3 mm + 1 ggm

Rapid Static:

Baseline Length	Number of Satellites	GDOP	Observation Time	Ассигасу
0 - 5 Km	≥ 4	≤ 5	5 - 10 min	5 - 10 mm + 1 ppm
5 - 10 Km	≥ 4	≤ 5	10 - 15 min	5 - 10 mm + 1 <u>ppm</u>
10 - 20 Km	≥ 4	≤ 5	10 - 30 min	5 - 10 mm + 1 <u>ppm</u>

BIBLIOGRAFY

- 1. Grecea, C., 1999 Introducere în geodezia satelitară, Mirton Publishing House, Timișoara 2. Neuner, J., 2000 Sisteme de pozitionare globala, Matrixrom Publishing House, Bucharest