SOILS FROM THE LIPOVA FOREST DISTRICT, ROMANIA

Aurelia MIHUŢ, A.G. HERŢANU, Casiana MIHUŢ, A. OKROS, Antoanela COZMA

Banat University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, 7imisoara, 300645, Romania

Corresponding author: casiana_mihut@usab-tm.ro

Abstract: This paper describes all soil types and subtypes within the Lipova Forest District. Geographically, the Lipova Forest District is located in the western part of Romania, in the Lipova Hills, with the Mureş River as limits to the north, the hills within the Bega River basin to the south, and the boundary between the western plain and the Lipova hills (UP I and UP IX) to the west. The average altitude is between 120 m, in the meadow of the Mures River, and 340 m. Most forests are found at altitudes between 200 and 400 m. Slope is the predominant geomorphological unit, followed by plateau, meadow and mane. The terrain configuration is usually flat and wavy, less often bumpy. Slope is a physical-geographical character with an ecological determinant role for soil and vegetation, bringing important changes in surface leakage. A number of arboreta suffer from the stationary conditions in which they vegetate, the soil being exposed to excess water - short-lived (0.67 ha) or seasonal (0.83 ha) - while others have stems damaged by game or rot at the base as a result of the origin of the shoots. These destabilising factors affect a total area of 2,687.18 ha as follows: 1.50 ha of low-to-medium intensity; unhealthy stems on 2,685.68 ha of which 10-20% (2,677.41 ha) and 30-50% (8.27 ha). These destabilising factors act either singularly or cumulatively (most often) with a different degree of intensity and, depending on it, they affect the normal development of the respective arboreta. Within the Lipova Forest District, the soils of the luvisol class predominate by 95%: luvosol, by 77%, preluvosol by 16%, and allosol by 2%. Next are the protisol class soils that participate with 3% of the area of forests and land for afforestation or reforestation while the smallest area is occupied by the cambisol class, which participate with only 2% of the area of forests and land for afforestation or reforestation.

Keywords: soil, forest district, luvosol, preluvosol, eutricambosol

INTRODUCTION

From a lithological point of view, the territory of the Lipova Forest District belongs to the following more important formations: diorite sand clays and compact sands, which occupy most of the surface. (EL ALFY Z., et al, 2010; BADEA A.C., 2014; CIOLAC VALERIA et al, 2013; POPESCU, C.A. et al, 2020) On these substrates, were formed stagnic or typical luvosols and preluvosols. (IANOŞ GH., et al, 1997; (IANOŞ GH., et al, 1992; CASIANA MIHUŢ, et al, 2018; MIRCOV V.D., et al, 2016) All soils are deep, rich in nutrients, devoid of skeleton, with a large compactness that causes the spread of oak species (Turkey oak and especially Hungarian oak are best adapted to soils with high compactness); sands mixed with gravels, on which rich and very rich soils of the type aluviosol (aluvial soil) have formed. (OKROS ADALBERT 2015; OKROS ADALBERT 2015 et al, 2018)

The presence of calcium and ferro-magnesium minerals in certain rock complexes has led to the formation of richer (basic) soils of medium or higher creditworthiness and on which medium or higher productivity arboreta grow; the lack of the above-mentioned minerals has led to the formation of poorer (more acidic) soils of medium and lower creditworthiness on which middle and lower productivity arboreta grow. (NIȚĂ L., et al, 2018)

MATERIAL AND METHOD

For the knowledge of the spatial distribution of soil types and subtypes within the Lipova Forest District, the determination of their intrinsic properties and the identification of the types of the resort, 226 main soil profiles (1 profile per 66 ha) were carried out and from 30 profiles,

85 soil samples were collected which were analysed at the *Laboratory of Pedology and Soil Analysis of OSPA Arad, Romania*.

The results of these analyses are presented in the Analysis Bulletin.

RESULTS AND DISCUSSION

The distribution of areas by altitude category is as follows:

- altitudes between 100 and 200 m: 3,577.04 ha (23%);
- altitudes between 200 and 400 m: 11,655.43 ha (77%).

Total district – 15,232.47 ha (100%).

The distribution of areas by tilt category is as follows:

- tilt less than 16 degrees: 13,089.98 ha (86%);
- tilt between 16 and 30 degrees: 2,084.04 ha (14%);
- tilt between 31 and 40 degrees: 58.45 ha (-%);

Total district – 15,232.47 ha (100%).

For a better knowledge of the spatial distribution of soil types and subtypes within the district (table 1), the determination of their intrinsic properties and the identification of the types of the resort, 226 main soil profiles (1 profile per 66 ha) were carried out and from 30 profiles, 85 soil samples were collected which were analysed at the *Laboratory of Forest Pedology and Soil Analysis of OSPA Arad, Romania*. The results of these analyses are presented in the *Analysis Bulletin*.

Table 1.

The soil types identified are the result of soil genesis factors (geological substrate, geomorphological, microrelief, and climate factors).

Class of soil	Types of soli	Subtypes of soil - cod	Supraface ca pe U.P ha									Total ha	%
			I	II	III	IV	V	VI	VII	VIII	IX		70
Protisoil	Aluvisol	dystric - 0401	97.98		1236	88.65	-	-	13258	-	8275	41452	3
	Total Aluvisoil		97.8		1236	8865		-	13258	-	823	41432	3
	Total Protisols		97.8		1236	8865	-	-	13238	-	8275	41432	3
Luvisoil	Preluvosol	typic-2101	51.44		-	-	9,06	173,08	58.77	-	-	29235	2
		stagnyc - 2108	ı		91,85	161,01	-	-	293.60	-	157807	2125.43	14
	Total Preluvosols		5144		9135	16101	906	17308	35237	-	157897	2417.78	16
	Luvosol	typic-2201	85.6	47225	128,66	-	614.44	61270	3825	1501.48	87,81	3541.19	24
		stagnyc -2212	1199.68	41427	172337	2090.82	-	-	246240	31.41	-	792215	53
		lytic - 2214	-	53.85	-	-	-	-	-	-	-	53.85	0
	Total Luvosols		128528	94037	185223	209032	61444	61270	250065	153289	8731	11517.1 9	77
	Alosol	typic-2301	1	-	-	-	-	-	177.12	-	-	177.12	1
		stagnyc -2305	-	-	-	14432	-	-	-	-	-	14432	1
	Total Alosoils		-	-	-	14432	-	-	177.12	-	-	321.44	2
	Total Luvisols		1336,72	94037	194408	2396,15	6233	785.78	3030.14	153289	1666.78	1425641	95
Combon 3	Eutricambosoil typic — 3101		1	4,6	-	63.47	15329	2727	8.74	-	-	25737	2
	Total Eutricambosols		1	46	-	63.47	15329	2727	8.74	-	-	25737	2
	Total Cambisols		1	46	-	6347	153,29	2727	8.74	-	-	25737	2
Total O.S.			1434.71	94497	195664	254827	77679	81305	317106	153289	174933	1492830	100

Table 1 shows that the soils of the luvisol class predominate (95%), namely luvisol (77%), preluvosoil (16%), and allosol (2%). Next are the protisol class soils that share 3% of the area of forests and land for afforestation or reforestation, while the smallest area is occupied by

the cambisol class, which shares only 2% of the area of forests and land for afforestation or reforestation.

Dystric aluviosol, formed on watersides, with a moderate humus content of 2-3%, is moderate to weak acid, and the degree of base saturation is less than 53%. It is a soil well supplied in water and nutrients, with a medium trophicity, favourable to common oak, Turkey oak, and Hungarian oak.

Typical preluvosol, with Ao-Bt-C profile, is formed on clays and diorite sands, on low-tilted slopes with various exhibitions, hight to low acidic, with a pH=4.5-6.3, rich to intense humiferous with a humus content of 5.1-21.5% over 15 cm, mesobasic to eubasic, with a degree of base saturation V=62-86%, well supplied in nitrogen at surface (0.25-1.10 g %) sandy-clayey to clayey-clay, of superior creditworthiness for oak species, at a high edaphic volume.

Stagnic preluvosol, with Ao-Btw-C profile, is formed on clays and diorite sands, on slightly inclined slopes, terraces, weak to intense humiferous with a humus content of 1.5-10.2%, is low alkaline to high acidic, with a pH=4.1-7.6 and a degree of base saturation greater than 53% in the Btw horizon reaching even 97% (ua 35B of UP VII on clay). It is a soil well supplied in nutrients, with a medium to superior trophicity, favourable to sessile oak, Turkey oak, common oak, and Hungarian oak. It is spread over 14% of the forest surface.

Typical luvosol, with Ao-El-Bt-C profile, is formed on rocks poor in calcium and ferromagnesium minerals, grit stone, etc., on slopes with various exhibitions, but predominantly shaded slopes and slopes not too inclined, strongly acidic to neutral with a pH=4.5 (in El)-6.9, very humiferous to intense humiferous, with a humus content of 5.6-19.5% over 1-15 cm, with a degree of base saturation V>53% in Bt or El; well to very well supplied in total nitrogen (0.288-1.000 g%), sandy-clayey to clay, light texture in El and heavy in Bt, of medium or low creditworthiness for Turkey oak, sessile oak, Hungarian oak, or mixtures of them.

Stagnic luvosol, with Ao-El-Btw-C profile, formed on clays, on light slopes, or terraces, even high plains, very strongly acidic to neutral with a pH=4.3(in El)-6.0, weak humiferous to intense humiferous with a humus content of 2.6-19.2% over 1-15 cm, degree of base saturation V>53% in Btw or in El. It is a medium trophic soil, favourable to sessile oak, Turkey oak, common oak, Hungarian oak, and a mixture, which form middle and upper productivity arboreta. It is spread over 53% of the forest surface.

Lytic luvosol, with Ao-El-Bt-Rli profile, is formed on moderately inclined slopes, on a small surface in UP II, similar to the typical one but superficial, with a massive rock that lies over 20-50 cm deep, strongly acidic, very humiferous, oligobasic with a lower degree of base saturation in the horizon podzolite El, very well supplied in total nitrogen, clayey-sandy, low creditworthiness for beech, sessile oak, European hornbeam, and Turkey oak. The lower creditworthiness is determined by the small edaphic volume due to the superficiality of the soil in thickness and of the skeleton on the profile. On this soil, it is recommended, in addition to the species mentioned above, to plant Austrian pine and Scots pine and spruce which make much better use of the edaphic conditions of superficial and skeletal soil.

Typical allosol, with Ao-Bt-C profile, formed on clays, light slopes, or terraces, even high plains, with a pH=4.5-5.6, humus content larger over 10 cm and decreasing in depth, degree of base saturation less than 53%. It is a soil of medium trophicity, being on almost flat land, favourable to the sessile oak, Turkey oak, Hungarian oak, and a mixture, which form arboreta of lower or middle productivity.

Stagnic allosol, with Ao-Elw-Btw-C profile, formed on clays, light slopes, or terraces, even high plains, is acidic to strong acid, with pH=4.4-5.4, humus content is intense (15.5%) over 10 cm and decreasing in depth, the degree of base saturation 35-79%. It is a soil of medium trophicity, being on almost flat land, favourable to sessile oak, Turkey oak, common oak, Hungarian oak, and a mixture, which form arboreta of medium and superior productivity. It is

spread over 1% of the forest surface.

Typical eutricambosol, with Ao-Bv-C profile. This soil is defined by the horizon B cambic (Bv) having a degree of base saturation (V>53%) in both Ao and Bt. It is formed on rocks rich in calcium and ferro-magnesium minerals, tectonic limestone, dolomites, conglomerates, limestone grit stone, diorite sands, and chlorite shales. It is found on moderately fast-inclined slopes with shadowed and semi-shadowed exhibitions, with medium productivity hill formations sometimes superior with mull-like floor represented by Asperula-Asarum. It is very acidic on the surface and less acidic in profuse with a pH=5.3-5.5, very humiferous with a humus content of 6.0% over 17 cm, mesobasic with a degree of base saturation V=70%, very well supplied in total nitrogen (0.31 g%), clayey-sandy to clayey, of medium creditworthiness (in the field studied) for beech, spruce, and European hornbeam. The middle creditworthiness is determined by the medium useful end-volume due to the presence of the skeleton on the profile in the proportion of 25-50% (semi-skeletal).

Physico-chemical characterization of soils within the Lipova Forest District

Table~2.

	U.P. and u.a.		Cirarac				1				
Nr crt		Horizont	Depth cm	Humidity	pН	Humus	Exchange bases	Exchange	Total exchange capacity	Degree of turation in bases	Total nitrogen %
1	UPI u.a.43B	Ao	0-10	1,017	4,972	2,650	17,670	11,104	28,774	61,410	0,136
2	Luvosoil stagnyc	El	10-30	0,905	4,877	1,900	14,780	11,183	25,963	56,928	0,097
3	8CE2GI, D.	Btw	30-90	1,516	5,511	0,400	2872C	6721	34,441	81,937	0,021
4	UPI u.a.53F Luvosoil stagnic 8CE1ST1GÎ, H.	Ao	0-11	0,762	5,481	5,000	20,610	7,875	28,485	72,354	0756
5		El	11-27	0,655	4,930	1,650	13,260	9793	22,553	58,796	0,085
6		Btw	27-97	1,283	5,254	1,000	21,870	8,584	30,454	71,814	0,051
7	UPI u.a. 56	Ao	0-12	0,876	5,223	5,000	20740	9,056	29796	69,087	0756
8	Preluvosoil typic 7TE3CA.II.	Bt	12-98	1,414	5,338	2,000	21790	9,135	30,425	69,975	0,103
9	UPH u.a.36B	Ao	0-5	1,100	5,457	5,625	20730	6721	26,451	76,480	0788
10	Luvosoil typic	El	5-20	1,434	5760	1,071	22,120	7,481	29,601	74,727	0,055
11	7CE3GÎ, H.	Bt	20-70	1,565	5,485	0,670	17,500	4,174	21,674	80,743	0,034
12	UPH u.a.2A	Ao	0-5	1,570	6,020	19786	35,770	6,615	42,385	84,393	0,989
13 14	Luvosoil stagnyc 7CE3GÎ,n.	El Btw	5-15 15-60	1,811 1,920	4.843 5,367	8.50 2,304	23,590 27,370	12,915 7,639	36,505 35,009	64,621 78,180	0,423

Table 3.

Physico-chemical characterization of soils within the Lipova Forest District											
U.P. și u.a. Typ, subtyp of soil Arboret: compoz-prod.	Horizont	Depth cm	Humidit	pН	Humus	Exchange bases	H Exchang e	Total exchange capacity	Degree of saturation in bases	Total nitrogen %	% texture
UP III u.a. 15A	Ao	04	1,090	6,075	13286	30,166	5,871	36,037	83,708	0,681	n-l
Luvosol stagnic	El	4-20	1,070	5.091	4,635	10,596	11279	21,875	48,440	0238	n
6CA2CE2GO, sămânță, 80 ani,Ps	Btw	20-90	1,033	5,328	2,391	13,480	8,343	21,823	61,770	0,123	a-1
ŕ	Ao	0-6	1,007	5,380	10,720	31,404	8,729	40,131	78248	0,550	n-1
UP III u.a. 17B Luvosol tipic					-					0,339	
6CE1GÎ1GO2CA,	El Bt	6-16 18-20	0,995 2,054	4,653 5,044	6,607 3,108	12,862 18218	16,145 16,454	29,007 34,672	44,341 52,543	0,339	n a-1
sămânță, 15ani, Ps	ь										a-1
UP III u.a. 59B	Ao	0-4	1,994	4,580	13,000	35,552	17,768	53,320	66,677	0,667	n-1
Luvosol stagnic	El	4-20	1,501	4,344	5,811	6,094	14,446	20,540	29,669	0,298	n
8CE1GO1CA, sămânță, 130 ani,Ps	Btw	20-90	1,531	5,220	2,676	10,420	6,644	17,064	61,066	0,137	a
	Ao	0-6	2209	6,494	10297	29,784	3,554	33,338	89,341	0,528	n-4
UPin u.a. 36A Preluvosol stagnic	Btwl	6-10	1,485	5,494	6,027	12,686	5,408	18,094	70,114	0,309	n
5CA3CE2TE, sămânță, 60 ani, Ps	Btw2	10-55	1,509	4,920	2,027	10,008	10,043	20,051	49,914	0,104	a
00 am, rs	Ao	3-5	2,060	4,464	15,514	10420	18,695	29,115	35,790	0,796	-
UP IV u.a 117B	BtWi	5-50	1,467	4,631	4297	8,978	11,974	20,952	42,851	0220	_
Alosol stagnic 7CE1GÎ2ST, D.	Btw ₂	3 30	3,180	5,499	1,865	21,750	5,871	27,621	78,744	0,096	-
/CEIGIZST, D.	Ao	0-20	0,781	5,330	6,027	18,012	7,571	25,583	70,408	0,309	-
UP IV u.a. 20A	Bv	20-75	1,029	5,490	1.560	14,716	6257		70.166	0.000	-
Eutricambosol tipic 9FA1DTJI.	- DV	-	-	-	1,560	-	-	6257	70,166	0,080	-
	Ao	0-15	0,921	4,895	8,000	11,626	12,824	24,450	47,551	0,410	-
UP IV u.a. 94B	El	15-25	0,782	4,841	2223	7,300	9,965	17265	42281	0,114	
Luvosol stagnic		25-60	1,764	5,387		18,424	5,794			0,034	-
6CE1GÎ2ST1DT,II.	Btw				0,658			24218	76,076		
	Ao	0-15	0,724	4,383	7,974	7,300	14,678	21,978	33216	0,409	-
UP IV u.a. 88 Preluvosol stagnic	BtW]	15-20	1,027	5,090	0,984	9,360	7262	16,622	56,313	0,050	-
6CE4GI,II.	Btw ₂	20-70	0,716	5,536	0,196	9,566	2,472	12,038	79,465	0,010	
	Ao	0-10	0,962	5,203	12,011	18,424	12206	30,630	60,151	0,616	-
UP IV u.a. 32A Luvosol stagnic	El	10-15	0,723	4,736	1,679	7,506	9,502	17,008	44,133	0,086	-
5CE3CEIGÎICA,n.	Btw	15-50	1226	5,220	0,635	16,158	4,481	20,639	78291	0,033	-
U.P.V u.a. 64 B	Ao	0-5	1,077	4,703	21,505	14,922	7,339	22261	67,033	1,103	n-1
Preluvosol tipic 6FA3CA1DT	Bt	5-85	0,706	4,838	1,820	6,888	7,571	14,459	47,640	0,093	l-a
Sămânță, 120 ani, Ps	-	-	-	-	-	-	-	-	-	-	-
U.P.V u.a. 16A Luvosol tipic	Ao	0-5	1,794	5,918	18,068	37,376	8,729	46,105	81,067	0,927	n-1
6CA2CE1GI1FA	El	5-25	1,306	4,780	4242	16,364	12,360	28,724	56,970	0218	n
sămânță, 80 ani, Pm	Btl	15-85	2,394	6,418	1,034	28,008	7,394	35,402	79,115	0,053	l-a
	Bt2	50-105	2,026	6,973	0,045	30,784	1,545	32,329	95221	0,002	l-a
UPVI u.a. 17	Ao	04	2,567	5,220	14,622	25252	13,673	38,925	64,873	0,750	n-1
Preluvosol tipic 6GO2GI2CE, sămânță,	Bt	4-84	1,951	4,488	3,501	10,008	17,304	27,312	56,643	0,180	La
100 ani,Pm	-	-	-	-	-	-	-	-	-	-	-
UP VI u.a. 25B Preluvosol tipic 6CE	Ao	0-5	1,989	5,614	8,307	21,338	6,412	27,750	76,894	0,426	n-1
4GI, sămânță, 80 ani, Ps	-	-	-	-	-	-	-	-	-	-	-

Table 4.

Physico-chemical characterization of soils within the Lipova Forest District U.P. și u.a. TTotal Degree of TTotal Tip, subtip de sol Depth Exchange exchang aturation in Horizont Humidit pН Humus Exchang nitrogen % CO₃ % capacity bases Arboret: compoz-prod 24 089 0-10 0.784 5 007 8 170 13 300 10 789 55 212 0.419 l-n U.P.VU, u.a. 78A 19.628 44.631 4.687 2.352 8.760 l-a 10.868 Luvosol stagnic 0.523 18,420 25.114 73,346 Btw 1.078 4.857 21-95 6,694 a 0-10 0.983 5.062 2.404 13.170 22.699 58.021 l-n U.P.VH, u.a. 76G Preluvosol stagnic 26.426 29.130 BtWi 11-30 1.338 5.075 2.064 16.740 9.686 63.346 0.106 78.373 Btw2 31-90 1.584 5.488 1.411 22.830 6.300 0.072 a 0-10 1.436 6.357 11.183 35.904 5,485 41.389 86,748 0.573 n-l U.P.VU. u.a. 51A Bt 27.664 11-70 1.740 5.312 4.086 38.865 71.179 l-a 11201 0.210 Preluvosol tipic 0-15 0.888 5.470 5.188 20.248 7.571 27.819 72.786 0.266 n-1 Ao U.P.VH, u.a. 50C 5276 Bt 16-55 1.559 14 480 8.575 23.055 62.807 0.044 l-n 0.860 Preluvosol tipic 0-10 10.553 60.002 n-l Ao U.P.VH, u.a. 38A Btwi 11-30 1209 5.128 2.750 14.780 9.608 24.388 60.605 0.141 l-a Preluvosol stagnic 31-90 2223 5.472 1.700 23.810 7.403 31.213 76.284 0.087 l-a 0-10 2.301 1.500 43,968 3.090 47.058 93,434 0.077 U.P.VJH, u.a. 35B BtWi 11-30 2.072 7,740 3.500 3.653 46.028 1.700 47,728 96,439 0.179 l-a Preluvosol stagnic Btw₂ 31-90 2274 7.620 0.504 34.872 1.004 35.876 97.201 l-a 0.200 0.010 UP VIU u.a. 52A 0-10 1288 5,740 6,625 22,750 6.721 29,471 77,195 0,340 Luvosol tipic 10-20 1,372 13,892 8,575 22,467 61,834 1214 5,142 3CE5GÎ1ST1TE 20-50 2297 5208 0,441 18,424 7,107 25,531 72,163 0,023 l-a sămânță, 150 ani, Pm 0-10 1.427 41.522 UP VIII u.a. 28D 6246 8281 35.728 5.794 86.046 0.425 Αo l-n Luvosol tipic 10-20 5,025 12,360 6GÎ4CE, sămânță,70 an Bt 30,346 20-50 1,536 5233 2,816 20,072 10274 66,143 0,144 l-a UP VIU u.a. 50C 0-5 1,571 5,796 19,506 35,728 9270 44,998 79,399 1,000 l-n Ao Luvosol tipic Εl 5-15 1.746 4,502 3.078 14,922 16,300 31222 47,794 0.158 l-a 5CE5GÎ, Rt 20-45 2240 5.570 0.318 22.956 5 408 28 364 80,935 0.016 l-a UP IX u.a. 56 A 0-5 1,379 4,187 5215 9,536 17,381 26,917 35,427 0^267 Ao Preluvosol stagnic Bw! 5-15 2,426 4,976 0,538 21,072 5253 26,352 80,046 0,028 5CE4GÎ1TE sământă. 15-45 2,781 6,450 0215 24,780 2,781 27,561 89,910 0,011 $Bw_2 \\$ ani,Ps Ao 0-5 2.372 4.517 12,581 21278 14,446 35,724 59,563 0.645 Ao/El 1,786 5,688 26222 7262 33,484 78,313 0.088 U.P.IX u.a.21 Luvosol tipic 10GO, 15-30 2,954 5,108 0,699 25,810 26,497 52,307 49,344 0,036 Εl sămânță, 85ani, Pm, Bt 30-60 2,518 6,419 0,484 21,072 4,481 25,553 82,466 0,025 U.P.IX u.a. 63E 0-5 2,194 5,702 7,849 25,810 6,953 32,763 78,779 0,403 Ao Preluvosol stagnic 5-15 2.899 5,618 0.930 29,827 BtW! 25,192 4,635 84,460 0.048 8FA2CA, sămânță. 15-45 3,029 6,736 1,392 26,840 2,086 28,926 92,789 0,071 95 ani.Pm

The other forest types occupy areas representing not more than 2% of the forest area and land for afforestation and reforestation.

CONCLUSIONS

Analysing the data presented in the paper, it is found that within the radius of the Lipova Forest District there are certain factors which, by their action, lead to the destabilization of some arboreta (or certain species, elements within the arboreta) affecting normal development.

Within the Lipova Forest District, the soils of the luvisol class predominate by 95%: luvosol, by 77%, preluvosol by 16%, and allosol by 2%. Next are the protisol class soils that participate with 3% of the area of forests and land for afforestation or reforestation while the smallest area is occupied by the cambisol class, which participate with only 2% of the area of forests and land for afforestation or reforestation.

BIBLIOGRAPHY

- BADEA A.C., BADEA G., 2014 "Cadastre, Databanks and GIS Applications in Urban Aeas", Conspress Publishing House, ISBN 978-973-100-310-8;
- CIOLAC VALERIA, NISTOR ELEONORA, POPESCU C., BĂBUCĂ N., DIRLEA AURUȚA, BÂRLIBA LIVIA, 2013 Study of flora and birds habitat in the Danube Delta: GIS approach. International Multidisciplinary 13th Scientific GeoConference SGEM 2013, 16-22 june, ALBENA-BULGARIA, Conference Proceedings, Vol.I., 935-942, ISSN 1314-2704, ISBN 978-954-91818-9-0;
- EL ALFY Z., ELHARDY R., ELASHRY A., 2010 Integrating GIS and MCDM TO Deal with Landfill Site Selection, International Journal of Engineering & Techhology IJET Ijens Vol: 10 No: 06, December 2010, p.p. 33-40;
- GHIBEDEA V., GRIGERESIK E., LUCIA BĂCANU, 1970 Precipitații atmosferice în Câmpia Banatului și în dealurile piemontane vecine. Studii de geografie a Banatului, vol.II, Universitatea Timișoara;
- IANOȘ GH., BORZA I., ȚĂRĂU D., STERN P., 1992, Contribuția OSPA Timișoara la cercetarea solurilor și sporirea fertilității terenurilor agricole din Banat, Știința Solului nr. 4, București;
- IANOȘ GH., GOIAN M., 1992, Influența sistemelor de agricultură asupra calității solurilor din Banat. Probleme de agrofit. teor. și aplic., vol. 14, nr. 3-4, ICCPT Fundulea;
- IANOŞ GH., PUŞCĂ I., GOIAN M., 1997 Solurile Banatului-condiții naturale și fertilitate, Editura Mirton, Timișoara;
- MIHUŢ CASIANA, NIṬĂ L. 2018 Atmospheric Factors used to characterize soil resources https://www.rjas.ro/issue detail/44, Timiṣoara, pag. 114-120
- MIHUŢ CASIANA, OKROS A., IORDĂNESCU OLIMPIA, 2012 Research on the soils of Western Romania. XI Wellmann International Scientific Conference, Review on Agriculture and Rural Development, Scientific Journal of University of Szeged, (Hungary) Faculty of Agriculture, vol.1(1) Supplement, 2012, ISSN 2063-4803;
- MIRCOV V.D., S. VUXANOVICI, COSMA ANTOANELA, OKROS A., PINTILIE SOFIA, NICHITA ANCA IULIANA, MOISESCU CARMEN IRINA, 2016 Climate records registered in western Romania, European Biotechnology Conference, vol. 231, ISSN 0168-1656, factor 3,34;
- NIȚĂ L., D ȚĂRĂU, GH ROGOBETE, GH DAVID, D DICU, SIMONA NIȚĂ Using pedologic information in defining the quality and sustainable use of land in western Romania, 2018/1/1; Jurnal Research Journal of Agricultural Science; Volumul 50; Numărul 1
- OKROS ADALBERT 2015, Fertility status of soils in western part of Romania Journal of Biotechnology, Volume 208, Supplement, 20 August 2015, -09.05.2015 Bucuresti Romania 3,14 Page S63.
- OKROS ADALBERT, POP GEORGETA, NITA SIMONA, RADULOV ISIDORA, MICU LAVINIA MADALINA, MIRCOV VLAD, DICU DANIEL DORIN 2016 Agricultural systems in the western part of Romania Journal of Biotechnology, Volume 231, Supplement, 10, Riga Letonia 3,14, Page S58

- Popescu, C.A., Herbei, M.V., Sala, F., 2020 Remote sensing in the analysis and characterization of spatial variability of the territory. A study case in Timis County, Romania. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 20(1): 505-514.
- * * * 2003, Ghidul excursiilor celei de-a XVII-a conferințe naționale pentru știința solului, "Utilizarea solurilor, protecția mediului ameliorat și dezvoltarea rurală din partea de vest a României", Editura Estfalia, București;
- * * * Implementarea Sistemului Român de Taxonomie a solurilor pentru partea de vest a României, Material elaborat de Gh. Rogobete și Gh. Ianoș.