THE INFLUENCE OF SEEDING TECHNOLOGY ON THE HARVEST AND ON THE CONTENT OF TAGETES PATULA L. ACTIVE PRINCIPLES

INFLUENTA TEHNOLOGIEI SEMĂNATULUI ASUPRA RECOLTEI ȘI A CONTINUTULUI ÎN PRINCIPII ACTIVE LA TAGETES PATULA L.

I.PROHAB., I. BORCEAN

Banat's Agricultural and Veterinary University, Timişoara, Romania

pun la dispoziția celor interesați date referitoare la receptaculuis, în domeniul cercetat, a variat între test area varied between 2600 and 8600 kg/ha 2600 şi 8600 kg/ha. Conținutul de heleanină, pe The heleanin content on average samples drawn from probe medii, din cele trei recolte, a fost de 0,366 %.

Rezumat: Cercetările desfășurate în Câmpia Abstract: The researches done on the Timiș Plain on Timişului, pe un sol de tip aluvisol, gleizat moderat, a moderate gleic alluvial soil make available for the interested persons data referring to the optimal perioada optimă de semănat, distanța dintre rânduri seeding period, the distance between rows and the si densitatea plantelor pentru specia tagetes patula plant density for the Tagetes patula L species. The L.Producția totală de Flores Tagetes sine total yield of Flores Tagetes sine receptaculuis on the

the three harvests has been of 0,366 %.

Key words: *Tagetes patula, seeding technology* Cuvinte cheie: . Tagetes patula, tehnologia semănatului

INTRODUCTION

Tagetes patula L is the only plant of the species it belongs to which is cultivated in our country because of its flower content liguled in heleanin.

The plant roots have the characteristic of attracting the nematodes from the soil. This is why this species could be important for the biological agriculture in the future, especially for the vegetable culture.

There are only a few researches regarding the technology of cultivation by seeding directly on the field, and for the western part of the country there are no data regarding this important technological chain loop.

MATERIAL AND METHOD

The experiments were trifactorial, organized after the subdivided lots' method, with three repetitions, having the following factors' graduations: the A factor - the seeding period; the B factor – the distance between rows; the C factor – the number of plants / m^2 .

The precursory cultivated plant was the bean. There have been obtained three yields annually.

RESULTS AND DISCUSSIONS

The results obtained by adding the three yields and expressed in fresh liguled flowers are given in Table 1. By analyzing the influence of the seeding period there resulted that, for the three distances between rows and the two densities, the best average results were obtained for the variants seeded in the second half of April. The increase of yield as compared to the seeding done during the first half was of 9%, which is a very significant difference of over 600 kg/ha.

In table 2 are presented the yield data expressed in liguled flowers dried in the open air until obtaining a cons tant weight.

	The total yield of fresh Flores Tagetes sine receptaculis									
The A factor The	The B factor The distance between	The C factor – The number of plants / m ²	The averages of the A factor							
seeding period	rows (cm)	$C_1 - C_{40}$	$C_2 - C_{60}$	Yield Kg/ha	%	Difference Kg/ha	Signification			
a_1	$b_1 - 30 \text{ cm}$	6791	6975							
1-10 IV	$b_2 - 50 \text{ cm}$	7536	7666	7002	100					
	$b_3 - 70 \text{ cm}$	6319	6732							
a_2	$b_1 - 30 \text{ cm}$	7140	7795							
10-20 IV	$b_2 - 50 \text{ cm}$	7725	8657	7612	109	610	XXX			
	b ₃ - 70 cm	7006	7347							
a_3	$b_1 - 30 \text{ cm}$	3038	3245							
20-30 IV	$b_2 - 50$ cm	3592	3866	3211	46	- 3791	000			

DL 5% = 180 kg/ha, DL 1% = 245 kg/ha, DL 0.1% = 319 kg/ha

Specification	C_1	C_2
Yield kg/ha	5755	6128
%	100	106
Difference		373
Signification		

 $b_3-70\ cm$

Specification	b_1	b_2	b_3
Yield kg/ha	5837	6507	5481
%	100	111	94
Difference		670	- 356
Signification		XXX	00

DL 5% = 254 kg/ha, DL 1% = 334 kg/ha, DL 0.1% = 454 kg/ha

Postponing the seeding until the last decade of April has decreased the yield with a very significant negative difference of over 3700 kg/ha.

Increasing the distance between rows from 30 cm to 50 cm has determined an increased of the yield with 11%, the yield difference of 670 kg/ha being very significant. Increasing the distance between rows to 70 cm is not motivated, because it has determined the decrease of the yield with 6 % as compared to seeding at 30 cm, the difference of over 350 kg/ha being significantly negative. Increasing the density from 40 plants / m² to 60 plants / m² has determined the increase of yield with 6%, the difference of 373 kg/ha being insignificant.

It is not to be wanted to postpone the seeding until the last decade of April, because it reduces the yield with over 700 kg/ha as compared to seeding in the first half of April.

The results of determining the heleanin content of the average samples are:

- sample I 0.377%
- sample II 0,355%

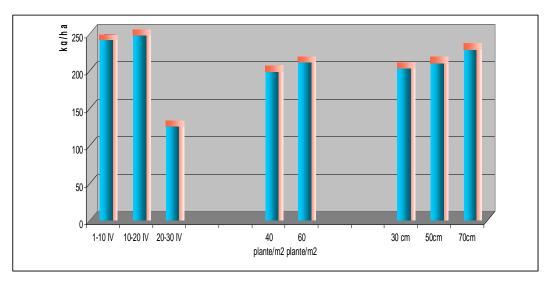
The average content = 0.366%

Based on the average content of 0,366% and on the total yield of Flores Tagetes sine receptaculus, there has been calculated the total quantity of helenien presented in fig. 1.

Tabelul 2

Table 1

The total yield of dried Flores Tagetes sine receptaculis


				- 0						
The A factor	The B factor	The C factor - The	The averages of the A factor							
The seeding	The distance	number of plants /								
period	between rows	m ²								
	(cm)	$C_1 - C_{40}$	$C_2 - C_{60}$	Yield	%	Difference	Cignification			
				Kg/ha	70	Kg/ha	Signification			
a_1	$b_1 - 30 \text{ cm}$	1358	1393							
1-10 IV	$b_2 - 50$ cm	1507	1534	1400	100					
	$b_3 - 70 \text{ cm}$	1264	1346	1100	100					
\mathbf{a}_2	$b_1 - 30 \text{ cm}$	1428	1549							
10-20 IV	$b_2 - 50$ cm	1545	1732	1520	108	120	XXX			
	$b_3 - 70 \text{ cm}$	1400	1469	1320	100	120	ΛΛΛ			
a_3	$b_1 - 30 \text{ cm}$	616	648							
20-30 IV	$b_2 - 50 \text{ cm}$	719	773	642	45	- 758	000			
	$b_3 - 70 \text{ cm}$	521	576							

DL 5% = 36 kg/ha, DL 1% = 49 kg/ha, DL 0.1% = 64 kg/ha

Specification	\mathbf{C}_1	C_2
Yield kg/ha	1151	1224
%	100	106
Difference		73
Signification		

Specification	b ₁	b_2	b_3
Yield kg/ha	1165	1301	1096
%	100	117	94
Difference		136	- 69
Signification		XXX	00

DL 5% = 51 kg/ha, DL 1% = 67 kg/ha, DL 0.1% = 91 kg/ha

Yield	242	248	126	200	212	- 2	204	211	229
Kg/ha									
%	100	102	52	100	106		100	103	112
Difference		2	-116		12		7		25

Fig. 1. The heleanin content obtained (kg/ha)

CONCLUSIONS

The results obtained show that the biggest *Flores Tagetes sine receptaculus* yields of the Banat Plain are obtained when the seeding is done in the second decade of April, at a distance of 50 cm between rows and a density of 60 plants/m²,

LITERATURE

- 1. BOJOR, O., ALEXAN, M., Plantele medicinale și aromatice de la A la Z. Ed. Recoop, București, 1984.
- 2. COICIU EVDOCHIA, RACZ, G., Plante medicinale și aromatice, Ed. Academiei RSR, 1962.