TOPOGRAPHIC AND LAND SURVEY MEASUREMENTS AT THE DIDACTIC EXPERIMENTAL STATION FARM No 5 TIMISOARA

A. ŞMULEAC, C. POPESCU, Valeria CIOLAC, M. HERBEI

Banat's University of Agricultural Sciences and Veterinary Medicine, Faculty of Agricultural Sciences, Timisoara, Aradului Street, no. 119, RO-300645, Romania, Corresponding author: adrian_smuleac@yahoo.com

Abstract: The topographic operations for this paper were performed at Farm No 5 of the Didactic Station of the University of Agricultural Sciences and Veterinary Medicine Timisoara. The Leica TPC 805 Total Station was used for the topographic and land survey measurements, and the data were downloaded with LEICA Geo Office Tools special software. Class V points within the university were used for the measurements. The total station is an optical device used for topographic measurements. It is a combination of the classic theodolite and an electronic instrument for measuring distances. The total station can include a small computer that provides storage capacity and makes precise calculations. The following plans were executed after the measurements were taken: dimension site plan -1:500; plot plan - 1:1000; development site plan -1:10000. Generally, a geodesic network has at least two old (already coordinated) points that in the first stage help determine the coordinates of the "new" points with the help of a certain method. A

direct link is created between the older points through horizontal angular observations. Distances and orientation must also be determined between these points. These elements will be used in the compensation calculations. For this reason, their determination must be very precise. The calculations of the geo-topographic support networks were done with the TOTAL 2.0 software. The (temporary) coordinates of the points to be determined are done automatically. The compensation of the support network is done with the least squares method, the indirect measurement method. The software creates a DFX file that can be used with the AutoCAD package at a later time. TOTAL 2.0 calculates and, where necessary, compensates any combination of direction and distance measurements, from the easiest (cancellation of registration, multiple intersection, multiple resection) to the most complex ones (various traverses, polygonometric networks, triangulation).

Key words: topographic operation, Farm No 5, retrospection, total station

INTRODUCTION

Total stations are part of the new generation of topographic instruments. Basically, they function like a classic tachymeter. They have been improved continuously since they were created and are now used almost exclusively. They are precise, easy to use and very efficient and have become the symbol of the modern land surveyor.

In planimetric traverses, angles and distances or orientations and distances are measured.

In principle, the problem is to find the coordinates of a new point, P(X,Y) using sights exclusively from this new point P to three older points $A(X_A,Y_A)$, $B(X_B,Y_B)$ and $C(X_C,Y_C)$ – given by their coordinates. The solution to this problem was found by Snellius in 1624 and improved by Pothénot in 1692. This is also called the "Pothénot problem" or the "map problem".

For field control, an additional sight is required (four coordinated points). It is recommended that the older points should be divided in four sectors

Unlike the intersection, which required the equipment to stand in at least two known coordinated points, from which older points and the point to be determined are observed, the

resection method requires standing in the point under location exclusively and measuring the lengths to at least three older points (of known coordinates).

The method is called resection because it reverses the intersection process using crossed back bearings.

In the field, data collection is much easier if the equipment stands in one point only instead of being moved to two or more points, as required when the intersection method is applied.

This method is necessary when the region provides visibility only to older inaccessible points (church crosses, signals, chimneys) and when control measurements for traversing are taken

It should be mentioned that the coordinates of the new point are only temporary. Several measurements should be taken which will be entered in a processing software application at a later time.

MATERIAL AND METHODS

The topographic operations for this paper were performed at Farm No 5 of the Didactic Station of the University of Agricultural Sciences and Veterinary Medicine Timisoara. The Leica TPC 805 Total Station was used for the topographic and land survey measurements, and the data were downloaded with LEICA Geo Office Tools special software.

The total station is an optical device used for topographic measurements. It is a combination of the classic theodolite and an electronic instrument for measuring distances. The total station can include a small computer that provides storage capacity and makes precise calculations.

The calculations of the geo-topographic support networks were done with the ${\it TOTAL}$ 2.0 software.

The (temporary) coordinates of the points to be determined are done automatically. The compensation of the support network is done with the least squares method, the indirect measurement method.

The software creates a DFX file that can be used with the AutoCAD package at a later time.

TOTAL 2.0 calculates and, where necessary, compensates any combination of direction and distance measurements, from the easiest (cancellation of registration, multiple intersection, multiple resection) to the most complex ones (various traverses, polygonometric networks, triangulation).

The following plans were executed after the measurements were taken: dimension site plan 1:500; plot plan 1:1000; development site plan 1:10000.

RESULTS AND DISCUSSIONS

The measurements carried out at Farm no 5 of the Didactic Experimental Station of the University started in station point A1 of unknown coordinates, which is located near the access area. From there the instrument was oriented to points of known coordinates 712 and 722. A traverse was started from point A1 through points A2, A3 and A4 for planimetric elevations.

Used in a large number of operations, traversing is a central method in plan elevations. It is the most common method in *elevation networks* and *detail positioning*, but it is also applied in dense support networks.

Data processing and plan drawing followed the topographic measurements. Table 1 gives the coordinates of the known points used for orientation purposes, of the station points

and of the radiate points. Figure 1 shows the development 1:10000 site plan and the location of Farm no 5 and figure 2 is the 1:1000dimension site plan.

Table 1
Coordinates of radiate points - Farm no 5, Didactic Station USAMVB Timisoara
STEREO'70

No	X	Y	No	X	Y
of point	[m]	[m]	of point	[m]	[m]
712	482915.514	205943.585	20	482750.814	205710.807
722	482924.045	205995.037	21	482805.844	205774.888
A1	482895.258	205756.735	22	482745.275	205699.570
A2	482850.600	205782.461	23	482748.528	205703.803
A3	482831.345	205709.607	24	482798.886	205656.370
A4	482798.074	205633.386	25	482802.157	205660.359
1	482894.600	205749.014	26	482807.298	205657.217
2	482895.639	205745.031	27	482803.080	205660.609
3	482846.236	205684.160	28	482828.257	205691.670
4	482835.531	205692.267	29	482832.375	205688.349
5	482891.430	205751.554	30	482802.648	205660.956
6	482885.188	205756.555	31	482843.970	205701.552
7	482879.492	205761.119	32	482840.007	205704.846
8	482872.664	205766.590	33	482837.249	205701.541
9	482860.267	205751.249	34	482836.444	205702.202
10	482857.097	205753.818	35	482834.635	205699.992
11	482854.332	205750.341	36	482839.485	205695.891
12	482857.465	205747.797	37	482834.751	205699.894
13	482864.296	205742.269	38	482838.813	205696.440
14	482849.250	205747.027	39	482746.782	205706.250
15	482809.477	205779.108	40	482854.382	205750.402
16	482845.853	205742.876	41	482851.587	205752.591
17	482797.024	205773.718	42	482847.999	205748.040
18	482799.753	205771.384	43	482800.858	205778.235
19	482748.028	205712.834		•	

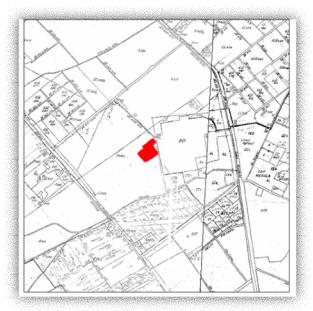


Figure 1: Development site plan

In order to check the measurements, the result of the processing was laid over the orthophotoplan no 205_482 corresponding to the area (figure 3). Two 1:1000 mapping plans were made with the help of a Leica Disto A5 laser distance meter (figures 4 and 5).

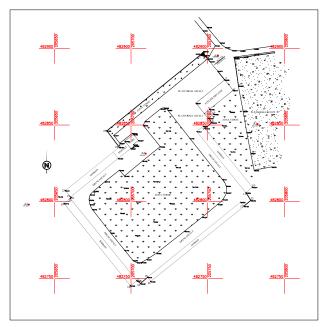


Figure 2: Dimension site plan – Didactic Station Timisoara, Farm no 5

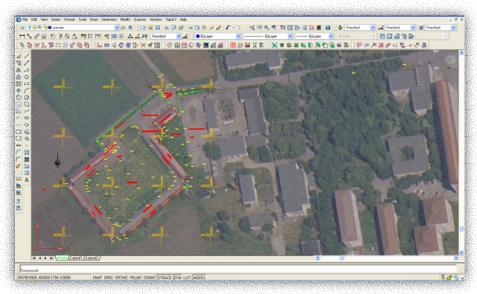


Figure 3: Dimension site plan overlapping the orthophotoplan – Didactic Station Timisoara, Farm no 5,

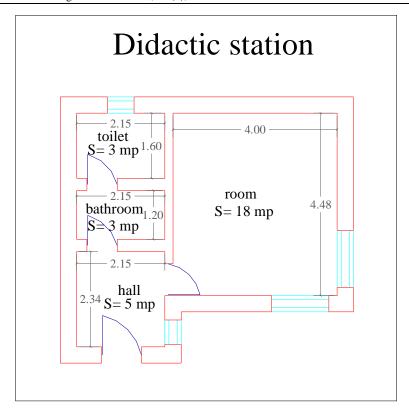


Figure 4: Mapping of Didactic Station, Farm no 5

CONCLUSIONS

The topographic operations for this paper were performed at Farm No 5 of the Didactic Station of the University of Agricultural Sciences and Veterinary Medicine Timisoara. The Leica TPC 805 Total Station was used for the topographic and land survey measurements, and the data were downloaded with LEICA Geo Office Tools special software.

The measurements carried out at Farm no 5 of the Didactic Experimental Station of the University started in station point A1 of unknown coordinates, which is located near the access area. From there the instrument was oriented to points of known coordinates 712 and 722. A traverse was started from point A1 through points A2, A3 and A4 for planimetric elevations.

Data processing and plan drawing followed the topographic measurements.

BIBLIOGRAPHY

- CIOLAC VALERIA, RITT C., POPESCU C., SMULEAC A., Lucrari practice de topografie agricola, Ed. Eurobit, Timisoara, 2007;
- 2. Doandes V., Topografie speciala, Ed. Politehnica Timisoara, 2006;
- 3. KIRALY A., Grafica pe calculator, Ed. U.T. Press, Cluj-Napoca, 2002;
- 4. Bos N., IACOBESCU O., Topografie moderna, Ed. C.H. Beck, Bucuresti, 2007.

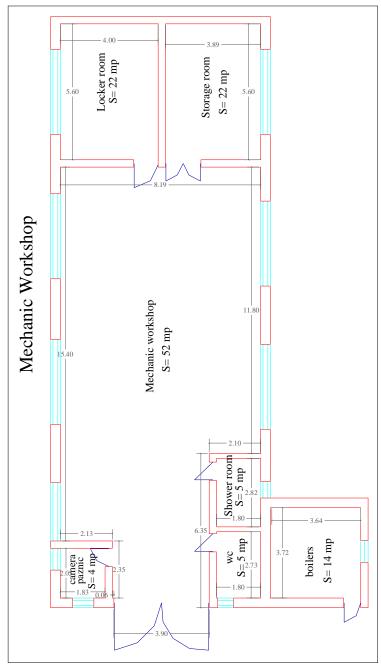


Figure 5: Mapping for the mechanic workshop in the Didactic Station, Farm no 5