VARIATION OF DROUGHT STRESS INDEX AT WINTER WHEAT **CULTIVARS IN CENTRAL PART OF OLTENIA**

VARIABILITATEA INDICELUI DE SUSCEPTIBILITATE LA SECETĂ, LA SOIURI DE GRÂU DE TOAMNĂ, ÎN CONDITIILE ZONEI CENTRALE A **OLTENIEI**

BOGHICI OFELIA NICOLETA¹, PĂUNESCU GABRIELA²

¹Faculty of Agriculture Craiova, 13 Libertatii Street, Dolj, Romania ²Agric. and Develop. Research Station Simnic, Soseaua Balcesti no.54, Craiova, Romania

Abstract: Seventy-six wheat cultivars were Rezumat: Şaptezeci şi şase de soiuri de grâu de compared in the field of ADRS Simnic during three years 2005-2007, where 2005 was a year with rainfall conditions and 2007 year with drought conditions. We identified cultivars of various origins with good results concerning the yield in the drought conditions on the base of drought stress index: TOL = stress tolerance; MP = mean productivity; GMP = geometric mean; SSI = stresssusceptibity index; STI = stress tolerance index. The wheat cultivars with good results in stress and non-stress conditions were: Romanian cultivars: Alex, Glosa, Romulus, Boema, Delabrad, Crina, Simnic 30, Rapid and Dor; Hungarian cultivar Martina; German cultivars Exotic and Cubus; French cultivar Aztec: cultivars Orion and Frini. These genotypes may serve as sources of germoplasm for breeding for drought tolerance.

toamnă au fost testate în câmpul experimental de la SCDA Simnic, timp de trei ani (2005-2007), 2005 fiind un an normal pentru cultura grâului și 2007 an extreme de secetos. Au fost identificate soiuri de diferite proveniențe cu bune rezultate privind productia în conditii de secetă, pe baza următorilor indici: TOL = tolerantă la secetă; MP = productie medie; GMP = medie geometrică; SSI = indicele de susceptibilitate la secetă; STI = indicele de toleranță la stres. Soiurile care au obținut rezultate bune au fost: soiurile românești: Alex, Glosa, Romulus, Boema, Delabrad, Crina, Simnic 30, Rapid și Dor; soiul unguresc Martina; soiurile germane: Exotic și Cubus; soiul franțuzesc Aztec; soiurile Orion și Frini. Aceste genotipuri pot servi ca surse de germoplasmă pentru ameliorarea toleranței la secetă.

Key words: wheat, drought stress, stress susceptibility index, stress tolerance index Cuvinte cheie: grâu, rezistența la secetă, indice desusceptibilitate la stress, indice de tolerență la stres

INTRODUCTION

The ability of wheat cultivars to perform reasonably well in variable rainfall and water stressed environments is an important trait for stability of production under drought stress conditions (PIRAYVATLOU, 2001). Drought resistance is defined as the relative yield of a genotype compared to other genotypes subjected to the same drought stress.

For identifying genotypes with high yield potential and high stress tolerance, we used several drought stress index or selection criteria: TOL = stress tolerance (ROSIELLE and HAMBLIN, 1981); MP = mean productivity; GMP = geometric mean (RAMIREZ and KELLY, 1998); SSI = stress susceptibity index (FISHER and MAURER, 1978); STI = stress tolerance index (FERNANDEZ, 1992).

Among the stress tolerance indicators, a larger value of TOL and SSI represent relatively more sensitivity to stress, thus a smaller value of TOL and SSI are favoured. Selection based on these two indices favours genotypes with low yield under non-stress conditions and high yield under stress conditions (GOLABADI et al., 2006). Selection based on STI and GMP will result in genotypes with higher stress tolerance and yield potential will be selected (FERNANDEZ, 1992).

MATERIAL AND METHODS

Seventy-six wheat cultivars of different origin were studied in field experiments during three years (2005-2007) at Simnic Agricultural Research Station where 2005 was a rainfall year with normal conditions and 2007 - drought conditions year. For each cultivar we calculated:

TOL - the differences in yield between the stress (Ys) and non-stress conditions (Yp). **MP** as the average yield of Ys and Yp.

GMP with formula $\sqrt{Ys.Yp}$

SSI – stress susceptibility index expressed by following relationships

SSI = [1-Ys/Yp]/SI where SI) stress intensity and is estimated as
$$\left[1 - \left(\frac{\overline{Ys}}{\overline{Yp}}\right)\right]$$
 where $\overline{Ys} = \frac{1}{\sqrt{2}}$

mean yield over all genotypes evaluated under stress conditions; Yp = mean yield over allgenotypes evaluated under non-stress conditions

STI = stress tolerance index $\left[Yp.Ys / \overline{Yp^2} \right]$

The results were grouped from different provenience of wheat cultivars.

RESULTS AND DISCUSSION

The Romanian cultivars, most from tested material-recorded under normal conditions, yield values among 4050 kg/ha (Albota cultivar) and 6960 kg/ha (Alex cultivar) their average being by 5594 kg/ha.

Under drought conditions yield values oscillated among 2230 kg/ha (Beti) and 3500 kg/ha (Alex), with an average by 2855 kg/ha. By stress tolerance point of view (TOL) were pointed out: Albota, Flamura85, Gabriela and Fundulea4 cultivars with the lowest values. But this indicator is not enough for the stress tolerance of these genotypes. Using GMP pointed out the following cultivars: Alex (4935), Glosa (4765 kg/ha) and Romulus (4605 kg/ha) (table 1).

On average, Romanian cultivars recorded a GMP value by 3996 kg/ha. Simultaneously use of SSI values and higher Yp values pointed out Romulus, Glosa, Crina and Alex cultivars.

The average value for SSI at Romanian cultivars was lower than 1 (0.879) indicating drought stress tolerance. After STI value Alex, Glosa and Romulus there are in the first group followed by Boema, Delabrad, Crina, Gruia, Simnic30, Rapid and Dor with STI higher than 0.600.

Generally, Romanian cultivars recorded STI=0.560, the highest value in this experiment so that they are the most tolerant at drought conditions.

Tested Hungarian cultivars registered under normal conditions yield values among 4042 kg/ha (GK Othalom) and 5880 kg/ha (Mariska) and their average was with 14% lower than Romanian cultivars average. Under stress conditions the limits for production were 1590 kg/ha (GK Elet) and 3380 kg/ha (Martina), their average being also with 14% lower than Romanian cultivars average. After GMP calculations were evidently Martina, Serina and Mariska cultivars and this order is the same using STI value also (table 2).

Regarding the Austrian and German cultivars, their production under normal conditions is practically equal with the Romanian; while under stress conditions, it is 7% lower than the Romanian yield. Using Yp values, Exotic (7470 kg/ha) and Cubus (7040 kg/ha) cultivars have higher yields comparatively with autochthon cultivars. Under stress conditions the highest Ys value is recorded by Carolina cultivar. MP and GMP averages are also

practically equal with those of Romanian cultivars. GMP and STI values point out that Exotic and Cubus cultivars have drought tolerance. In average, STI value for Austrian and German cultivars is close to the Romanian value and with 0.107 over the Hungarians (table 3).

Table 1. Estimation of stress tolerance attributes from the potential yield and the stress yield data from Rumanian wheat cultivars evaluated for intensity stress = 0.53 at ARDS Simnic 2005-2007

Genotype	Yp	Ys	TOL	MP	GMP	SSI	STI
BOEMA	5500	3420	2080	4460	4337	0.71	0.658
ROMULUS	6690	3170	3520	4930	4605	0.99	0.743
DELABRAD	5730	3000	2730	4365	4146	0.90	0.602
GLOSA	6820	3330	3190	5075	4765	0.98	0.795
FL 85	4700	2930	1710	3815	3711	0.71	0.482
CRINA	6130	3140	2990	4635	4387	0.92	0.674
IZVOR	4490	2860	1630	3675	3583	0.72	0.450
DROPIA	5440	2740	2700	4090	3861	0.94	0.522
GRUIA	5670	3100	2570	4385	4192	0.86	0.615
Ş 30	6560	2650	3910	4605	4169	1.12	0.609
ALEX	6960	3500	3460	5230	4935	0.94	0.853
F4	4420	2610	1810	3515	3396	0.77	0.404
RAPID	6420	2940	3480	4680	4345	1.02	0.661
FAUR	6000	2510	3490	4255	4070	1.10	0.527
Lv 34	5550	2490	3060	4020	3717	1.04	0.484
DOR	6820	2650	4170	4735	4251	1.15	0.633
BRIANA	5310	2510	2800	3910	3651	0.99	0.467
ALBOTA	4050	3300	750	3675	3656	0.35	0.468
BETI	4140	2230	1910	3185	3038	0.87	0.323
GABRIELA	4560	2830	1730	3695	3592	0.72	0.452
GASPAROM	4600	2430	2170	3515	3378	0.89	0.391
TRIVALE	6510	2480	4030	4495	4018	1.17	0.565
Mean	5594	2855	2739	4225	3996	0.897	0.560

Table 2. Estimation of stress tolerance attributes from the potential yield and the stress yield data from Hungarian wheat cultivars evaluated for intensity stress = 0.53 at ARDS Simnic 2005-2007

Genotype	Yp	Ys	TOL	MP	GMP	SSI	STI
MARTINA	5730	3380	2350	4555	4401	0.77	0.678
SERINA	5710	2850	2860	4280	4034	0.95	0.570
MARISKA	5880	2750	3130	4315	4021	1.00	0.566
GK PINKA	4190	2620	1570	3405	3313	0.71	0.384
Mv EMESE	4170	2240	1930	3205	3056	0.87	0.327
Mv MAMBO	4130	2190	1940	3160	3007	0.89	0.317
MADRIGAL	4940	2570	2370	3755	3563	0.91	0.445
GK ELET	4960	1590	3370	3275	2808	1.28	0.276
GK MISKA	5071	2290	2781	3681	3407	1.03	0.407
GK PETUR	4243	1870	2373	3057	2817	1.06	0.278
GK OTHALOM	4042	2756	1286	3398	3338	0.60	0.390
Mean	4824	2464	2360	3644	3433	0.915	0.422

Table 3. Estimation of stress tolerance attributes from the potential yield and the stress yield data from Austrian German wheat cultivars evaluated for intensity stress = 0.53 at ARDS Simnic 2005-2007

Genotype	Yp	Ys	TOL	MP	GMP	SSI	STI
CAROLINA	5322	3130	2192	4226	4081	0.77	0.583
EXOTIC	7470	2840	4630	5155	4606	1.17	0.743
DUNAI	5220	2780	2440	4000	3809	0.90	0.508
MEUNIER	6050	2660	3390	4355	4012	1.06	0.564
JOSEF	4580	2660	1920	3620	3490	0.79	0.427
CORDIALE	5970	2540	3430	4255	3894	1.08	0.531
CUBUS	7040	2520	4520	4780	4212	1.21	0.621
FRIDOLINE	4920	2420	2500	3670	3450	0.96	0.417
CAPO	4523	2340	2183	3432	3253	0.91	0.371
Mean	5677	2654	3013	4166	3867	0.98	0.529

Even if average yield value under normal conditions at ex-Russian cultivars is very closely to Romanians, these are inferior to Ys average that is with 30% below autochthon cultivars. None of these cultivars had higher than 4000 kg/ha or 0.600 GMP respectively STI values. Also SSI values for all these, except one, were higher than 1.00 suggesting that are not proper for this area (table 4).

Table 4. Estimation of stress tolerance attributes from the potential yield and the stress yield data from Russian Ukrainian wheat cultivars evaluated for intensity stress = 0.53 at ARDS Simnic 2005-2007

Genotype	Yp	Ys	TOL	MP	GMP	SSI	STI
BEZOSTAIA	5040	2680	2360	3860	3675	0.88	0.473
KJAJNA	5430	1520	3910	3475	2873	1.36	0.289
KHVYLIA	5430	2340	3090	3885	3565	1.07	0.445
KOSKA	6100	2480	3620	4290	3889	1.11	0.530
DEMETRA	6450	1250	5200	3850	2839	1.52	0.282
MIRONOVSK	6470	1880	4590	4175	3488	1.34	0.426
OFELIA	4110	1780	2330	2945	2705	1.07	0.256
KRASNODAR	6110	1970	4140	4040	3469	1.29	0.422
LADA	4950	1860	3090	3405	3034	1.17	0.322
PRELOMA	5190	2340	2850	3765	3485	1.04	0.425
VESTA	6820	1810	5010	4315	3513	1.39	0.432
Mean	5645	1992	3653	3819	3353	1.20	0.391

Comparatively with the autochthone, the French material is placed immediately after the German material. French cultivars have also Yp and Ys averages practically equal with Romanians. Keeping into account GMP and STI values from this material evidently is Aztec cultivar. Generally, French cultivars as a consequence of SSI and STI values are close to Romanian cultivars, being appropriate for planting in areas with drought incidence excepting Renan and Enesco (table 5).

Table 5.
Estimation of stress tolerance attributes from the potential yield and the stress yield data from French wheat cultivars evaluated for intensity stress = 0.53 at ARDS Simnic 2005-2007

Genotyp	Yp	Ys	TOL	MP	GMP	SSI	STI
AZTEC	5930	3370	2570	4650	4470	0.81	0.700
CEZANNE	5430	3010	2420	4220	4043	0.84	0.572
BERCY	5530	2870	2660	4200	3984	0.91	0.556
ENESCO	4650	2830	1820	3740	3628	0.74	0.461
APACHE	5630	2670	2960	4150	3877	0.99	0.526
RENAN	4320	2170	2150	3245	3062	0.94	0.328
Mean	5248	2820	2428	4034	3847	0.872	0.524

Cultivars that entered from Israel after the results obtained for all indicator categories are not suitable for planting under drought conditions. Recorded values were below of Romanians thus: 16% less for Yp, 30% less Ys value, 28% less for GMP and 0.263 less for SSI (table 6).

Two cultivars inside of the group of cultivars with different origin showed very good indicators: Orion (GMP=4801 kg/ha, SSI=0.780, STI=0.807) and Frini (GMP=4151 kg/ha, SSI=0.750, STI=0.603). Presented cultivars belonging to different categories were identified like having yield potential and high drought tolerance (table 7).

 $Table\ 6.$ Estimation of stress tolerance attributes from the potential yield and the stress yield data from Israeli an cultivar evaluated for intensity stress = 0.53 at ARDS Simnic 2005-2007

Genotyp	Yp	Ys	TOL	MP	GMP	SSI	STI
HAZERA 307	3700	1790	1910	2745	2574	0.97	0.232
BHASH	3890	1800	2090	2845	2646	1.01	0.245
SHOHAM	5440	2520	2920	3980	3703	1.01	0.480
DARIEL	3460	1910	1550	4675	2571	0.85	0.231
Mean	4123	2005	2118	3064	2875	0.96	0.297

CONCLUSIONS

Romanian cultivars are the best adapted for the central part of Oltenia and immediately under these are placed Austrian, German and French cultivars in their totality. Cultivars with yield potential also under normal and stress conditions are the Romanians: Alex, Glosa, Romulus, Boema, Delabrad, Crina, Simnic30, Rapid and Dor; Hungarians: Martina; German cultivars Exotic and Cubus; French cultivar: Aztec; Orion and Frini cultivars. Comparatively with SSI (drought sensitivity index) is obviously that STI (stress tolerance index) is a more effectively indicator for drought tolerance characterization. In both conditions STI indicates the cultivars with high yields.

Table 7. Estimation of stress tolerance attributes from the potential yield and the stress yield data from different provenience wheat cultivars evaluated for intensity stress = 0.53 at ARDS Simnic 2005-2007

Genotype	Yp	Ys	TOL	MP	GMP	SSI	STI
ORION	6280	3670	2610	4975	4801	0.78	0.807
FRINI	5350	3220	2130	4285	4151	0.75	0.603
KRISTINA	4690	1500	3190	3095	2652	1.28	0.246
DEFENCE	5260	2680	2580	3970	3755	0.93	0.494
SOLOMON	5230	1660	3570	3445	2946	1.29	0.304
ALBATROS	6370	1900	4470	4135	3479	1.32	0.424
ROWHIDE	5010	2010	3000	3510	3173	1.13	0.353
VORONA	5210	1940	3270	3575	3179	1.18	0.354
GEORGIA 1	4150	2010	2140	3080	2888	0.97	0.292
HOFF	4990	2040	2950	3515	3191	1.11	0.357
COLUMNA	4400	1710	2690	3055	2773	1.15	0.264
PATTON	6910	1200	5710	4055	2880	1.56	0.290
Mean	5321	2128	3193	3725	3365	1.12	0.398

LITERATURE

- 1. Fernandez G.C.J., 1992, Effective selection criteria for assessing plant stress tolerance. In: Proc. of on the Symp.Taiwan, 13-18 Aug, 25: 257-270
- 2 .GOLABADI M., ARZANI A., MIRMOHAMMADI MAIBODY S.A.M., 2006, Assessment of Drought Tolerance in segregating Populations in Durum Wheat. African Journal of Agric. Research. Vol.1(5): 162-171
- 3. PIRAYVATLOU A.S., 2001, Relations among Yield Potential, Drought Tolerance and Stability of Yield in Bread Wheat Cultivars under Water Deficit Conditions.
- 4. RAMIREZ P., KELLY J.D., 1998, Traits related to drought resistance in common bean. Euphytica 99: 127-136
- 5. ROSIELLE A.A., HAMBLIN J., 1981, Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci.21:943-946